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Abstract. Single image super-resolution (SISR) methods based on deep
learning techniques, especially convolutional neural networks (CNNs)
and residual learning, have made great achievements compared with tra-
ditional methods. Most of the current work focuses on the structural
design to increase the depth of the entire network and thus improve the
performance of the models. However, it is also important to improve the
efficiency of model parameters, especially in the case of limited resources.
To improve the performance of the models when the number of model
parameters keeps relatively small and fixed, we propose a novel multilevel
residual learning pattern for SISR in this work. The proposed method
shows a stable performance improvement over the compared structures
on several benchmark datasets with equal model parameters. Besides, we
empirically show that simply increasing the number of building blocks
(e.g. various residual blocks) to increase the depth of the networks will
not obtain the expected improvements of performance, which may imply
that the optimal performance of different network depths corresponds to
different structures of building blocks.
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1 Introduction

Single image super resolution (SISR) is a classic ill-posed problem in computer
vision community which aims at recovering a high resolution (HR) image from
only one low resolution (LR) image. High resolution means that pixel density
within an image is higher than its LR counterparts and therefore an HR image
can offer more details that may be critical in various applications such as medical
imaging [1,2], aerial spectral imaging [3] and remote sensing imaging [4,5], face
recognition [6], security and surveillance [7] et al., where high-frequency details
are usually critical and greatly desired.
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Fig. 1. The structure of several residual blocks. C, B, R and + represent conv, batch
normalization, ReLU and element-wise addition respectively. (a) the original residual
block [18]. (b) SRResNet [14]. (c) EDSR/MDSR [16]. (d) the proposed residual block.

In recent years, many image super resolution (SR) methods based on deep
learning techniques [8], especially convolutional neural networks (CNNs) and
residual learning, have emerged and greatly promoted the best state of SR.
Some of the most representative are SRCNN [9], DRCN [10], DRRN [11], VDSR
[12], ESPCNN [13], SRResNet [14], LapSRN [15], EDSR/MDSR [16] and RDN
[17] etc. Residual learning [18,19] is a trick to increase the depth of the networks
and thus improve the model performance. It was first proposed for image recog-
nition and has been widely proved to be helpful for gradients propagation and
model convergence, thus making it possible to build extremely deep networks.
With the increased depth of networks, the expressive power and generalization
ability of the models have also been improved. Though many methods based on
residual learning (e.g. SRResNet [14], EDSR/MDSR [16] and RDN [17]) have
achieved much better results than previous methods, the cost for getting further
improvement of model performance becomes more and more expensive as the
depth of the network increases. Therefore, it is useful to improve the efficiency
of model parameters in the case of limited resources.

A key factor of residual learning that affects model training and performance
is residual connection (or skip connection, shortcut [18]). The previous methods
have a common feature in network structure design: residual learning is usually
applied to the overall structure of the networks or building blocks, but not deep
into the information paths of a residual block. Normally, a residual block is
composed of a residual path (a identity mapping) and a main path (Fig. 1). In
this work, we present a novel multilevel residual learning pattern for SISR, which
we term ML-ResNet. In our model, residual connection is applied not only to
the outermost layers and the internal residual blocks, but also to the main path
within a residual block (Fig. 1(d)). Thus, the whole structure of the network
exhibits the characteristic of multilevel residual learning.

We evaluate the proposed model on several benchmark datasets and compare
it with some common block structures. The experimental results show that the
multilevel residual structure has a stable performance improvement over the
compared methods with equal model parameters. Moreover, we also empirically
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illustrate that simply increasing the number of building blocks does not achieve
the expected performance gain, which implies that the optimal performance
of the networks with different depth may correspond to different structures of
building blocks. This observation might shed some light on the structural design
of deep networks or building blocks.

2 Related Work

2.1 Super Resolution with Deep Learning

Dong et al. proposed the first SR model [9] based on CNNs in the modern sense
and built an end-to-end mapping between the (bicubic) interpolated LR images
and their HR counterparts. The further improvement based on this pioneering
work mainly aimed at increasing network depth or sharing network weights at
the beginning [10–12]. These methods use the interpolated version of the LR
image as the input of their model, which is convenient for keeping the size of
the output image consistent with the target HR image and works well for the
fractional scaling factors. However, it hinders establishing end-to-end mappings
from the original LR image to the corresponding HR image and suffers the
computational and memory constraints as they operate feature maps in the HR
image space. This problem can be solved by placing nonlinear mapping in the
LR image space. There are two options for the purpose currently, i.e., transpose
convolution (or deconvolution [20]) and efficient sub-pixel convolutional neural
network (ESPCNN) [13]. As the amount of computation and memory occupancy
are greatly reduced, Lim et al. [16] increased the depth and the width (the
number of the feature maps’ channel) of their networks aggressively (32 residual
blocks for EDSR and 80 residual blocks for MDSR).

Although these networks have made great breakthroughs in improving SR
results, their performance gains are mainly achieved by increasing network depth
and adjusting the structure of the entire network. Changes in the structure of
residual blocks also aim at increasing the network depth to a certain extent. On
the contrary, the target of this work is to promote the information flow through
the entire network and improve the efficiency of the model parameters.

2.2 Residual Learning for Super Resolution

Residual Network (ResNet) [18] is initially proposed for image recognition, which
is further applied to a wide range of computer vision problems such as image
classification, object detection, image segmentation and image generation. Most
of the methods mentioned in Sect. 2.1 apply residual learning, e.g., DRRN [11],
VDSR [12], SRResNet [14], EDSR [16] and RDN [17] etc. An impressive work was
presented in [21], named HelloSR. Inspired by the effectiveness of learning high
frequency residuals for SR, HelloSR presented a novel stacked residual refined
network which generated HR image by explicitly learning the multilevel residuals
in the HR image space.
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These methods employ residual learning in different ways. However, most
of them adopt residual connections only between the outermost layers or the
middle modules of their network, but not within the information paths of a
building block. In this work, the outermost layers, the intermediate building
blocks and the information pathes within a block are viewed as different levels
of a network and residual learning is applied to all of these levels. Experiments
show that this multilevel residual structure is helpful to improve the performance
of the model when the network structure is relatively shallow.

Fig. 2. The overall structure of two networks used in this work. (a) the same structure
as EDSR [16] but the number of residual blocks is limited to 4. (b) Extension of (a)
with an external skip connection.

3 Multilevel Residual Networks

3.1 Overall Network Structure

The overall structure of ML-ResNet is outlined in Fig. 2. The networks consist
of three typical parts: feature extraction network (FEN), nonlinear mapping
network (NMN) and HR image reconstruction network (HRN). The FEN is
applied to represent the input image as shallow features. These shallow features
are then fed into a set of cascaded building blocks, i.e., NMN that produces deep
features. Next, a pixel shuffle layer is concatenated to upsample deep features to
match the expected size (e.g. SR×2 or SR×4). Finally, the upsampled features
are delivered to HRN to generate the HR outputs.

Denote x and y as the input and the output of the entire network, xi and yi

as the input and output of the sub networks or building blocks. Formally, the
operation for shallow features extraction could be expressed as:

y0 = Fe(x) (1)

where Fe(·) denotes the first feature extraction network FEN. It extracts the
shallow features and expands the dimension along with channel direction. The
output of FEN is directly fed into NMN (x0 = y0). Similarly, the operation for
the whole nonlinear feature mapping network could be denoted as:

yn = Fm(x0) (2)
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where n denotes the number of the building blocks, and yn indicates the output
of the nonlinear feature mapping function Fm(·). Here, Fm(·) includes all the
building blocks within nonlinear feature mapping network and the subsequent
conv layer, as shown in Fig. 2.

After the global skip connection (GSC), the input of HR image reconstruction
network is xn+1 = yn + x0. In EDSR/MDSR [16], the final output of the entire
network is as follow (Fig. 2(a)):

y = Fr(xn+1) = Fr(yn + x0) (3)

where Fr(·) denote HR reconstruction function that consists of a pixel shuffle
followed by a conv layer. However, there is an external skip connection (ESC)
before the final output of the proposed ML-ResNet, as shown in Fig. 2(b):

y = x + Fr(xn+1) = x + Fr(yn + x0) (4)

Fig. 3. Detailed illustration of the proposed residual block. Each residual block consists
of many sub residual blocks, which are composed of the basic Conv + ReLU operations.

3.2 Building Residual Blocks

ResNet is usually modularized and consists of a series of stacked blocks. In
a residual block, the main path augments the expressive ability of the model,
while the residual path promotes the information propagation through the entire
network. Denote the input and the output of a residual block Bl as xl and yl

respectively. Then Bl can be expressed in a general form [18]:

yl = h(xl) + FB(xl,Wl)
xl+1 = f(yl)

(5)

where h(·) and FB(·) are the mapping function of residual path and the main
path respectively. f(·) is a function that converts the output of Bl to the input of
Bl+1. He et al. [19] theoretically explained that a compact information path (the
identity mapping in Fig. 1) is helpful for easing optimization, i.e., h(xl) = xl and
f(yl) = yl. This is viewed as a contiguous memory mechanism [17] and most of
the current SR models follow this principle.

However, most of the previous methods adopted direct nonlinear mapping in
the main path FB(·). In this work, residual learning is also applied deep into the
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main path FB(·) of a residual block, as shown in Fig. 3 and Fig. 1(d). We call
this ResNet-in-ResNet structure fine-grained residual learning, which is expected
to promote data flow in the main path of a residual block. One can adjust the
number of sub residual blocks (SRB) in a residual block (RB) and thus change
the density of residual learning. If the NMN includes x residual blocks and each
residual block contains y sub residual blocks, we call it ML-ResNet (BxSy).

3.3 Multilevel Residual Pattern

In addition to the fine-grained residual learning within residual blocks, we also
introduce an external skip connection (ESC) between the outermost layers of the
entire network, which we call coarse-grained residual learning. Thus, the residual
pattern is applied to multiple abstract levels of the model and the whole network
structure displays the characteristic of multilevel residual learning from fine to
coarse grain. This multilevel residual structure is proved to be effective in our
experiments, which is probably because it is related to the (multilevel) manifold
simplification [22] although there is still no strict theoretical argument.

Interestingly, the experiments show that the external skip connection seems
to have no obvious effect on the performance of the network with EDSR residual
blocks (Fig. 1(c)), but it can slightly improve the performance of the model built
with the proposed residual blocks (Fig. 1(d)). This also shows the validity of the
multilevel residual structure to some extent.

4 Experiments

In this section, we first introduce some experiment settings. Next, we study the
impact of residual density and the external skip connection on the performance
of the model. The overall structure of the network is Fig. 2(b) and the reference
structure is Fig. 2(a). The residual blocks shown in Fig. 1(b)−(d) are used for
comparison. Finally, we compare the proposed model with several previous meth-
ods quantitatively and qualitatively. The performance is evaluated with PSNR
and SSIM [23]. They are calculated with the built-in functions of Python skim-
age module during quick validation, but in the testing phase, we use different
calculations for fair comparison.

4.1 Training Settings

DIV2K dataset [21,24] is used to train and quickly validate the models (only
the first 10 validation images of DIV2K are used). Several standard benchmark
datasets are used for testing, including Set5 [25], Set14 [26], B100 [27], Urban100
[28] and DIV2K validation set. For training, the HR images are randomly split
into 96 × 96 RGB image patches and the size of LR patches are dynamically
adjusted according to SR scales. Data augmentation and mean removal are the
same as EDSR/MDSR [16].
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Given a training dataset D = {xi,yi}|D|
i=1, where |D| is the number of training

samples, l1 loss function is used for model training:

L(θ) =
1
|D|

|D|∑

i=1

||yi − ŷi||1 (6)

where ŷ is the estimate of the model and y is the corresponding target. θ denotes
the set of model parameters. It is worth noting that the number of parameters
is the same for the compared architectures.
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Fig. 4. The validation performance of the models with different residual density on the
first 10 validation images of DIV2K (SR×4).
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Fig. 5. The validation performance of the models with different residual blocks shown
in Fig. 1(b)−(d). Only the first 10 validation images of DIV2K are used for comparison
(SR×4).
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The size of minibatch is 32 and that of filters is 5×5. The number of residual
blocks and feature maps is 4 and 256 respectively. We trained the models with
ADAM optimizer [30] by setting β1 = 0.9, β2 = 0.999 and ε = 10−8. The
piecewise constant decay is used for learning rate, i.e., it is initialized as 10−4

and halved at every 105 iterations. All models are trained for 5× 105 iterations.

4.2 Residual Density

In our settings, there are multiple combinations of residual blocks and their
sub residual blocks when the total number of conv layers is fixed, which forms
different residual density of the NMN. For comparison, we used the structure in
Fig. 2(a) and set the total number of conv layers in NMN to 8. Thus, we have 4
combinations: B1S8, B2S4, B4S2 and B8S1, where B and S represent the number
of residual blocks and sub residual blocks respectively. However, B8S1 is invalid
due to the degradation of model structure, as shown in Fig. 3.

From Fig. 4, it can be seen that B2S4 and B4S2 perform almost the same, but
obviously better than B1S8. The result is stable in our repeated experiments. It
is probably because that a residual network can be viewed as a collection of many
paths of differing length [29] and different residual densities lead the actual depth
of the entire network to be different. This implies that the optimal performance
of different network depths may correspond to different structures of building
blocks, and simply increasing the number of building blocks to increase the depth
of the network may not achieve expected performance improvements.
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Fig. 6. The validation performance of the models with and without ESC. Only the
first 10 validation images of DIV2K dataset are used for comparison (SR×4).

4.3 Different Residual Blocks

Because Fig. 1(a) is mainly used for classification, detection and other high-level
computer vision problems, we exclude this structure in our experiments. For all
of the compared structures, we set 4 residual blocks in the entire network with
two convolutional layers in each block for fair comparison.
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Fig. 7. Visual comparison with some previous SISR methods. (1) The first row shows
image “butterfly” in Set5 with scale ×4. (2) The second and the third rows show
image“img003” and “img043” in Urban100 with scale ×3.

As shown in Fig. 5 and Table 1, the proposed residual structure achieved
the best SR performance. The residual block used in SRResNet [14] is obviously
inferior than others. This is probably because the batch norm layer is not suitable
for low-level computer vision problems. Although [16,17] removed the batch
norm layer and stated its shortcomings (e.g., requires more computational and
memory resources), they did not verify it experimentally.

4.4 External Skip Connection

The impact of ESC on the performance of the models is studied in this subsec-
tion. EDSR and ML-ResNet residual blocks are used for comparison. The vali-
dation performance of different architectures on the first 10 validation images of
DIV2K is shown in Fig. 6.

Figure 6 exhibits an interesting phenomenon, i.e., ESC seems to have no
obvious effect on the performance of the network with EDSR residual blocks but
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Table 1. Quantitative comparison between some previous methods and the proposed
ML-ResNet. SRResNet (block×4) and EDSR (block×4) are also included here. The
maximal values are bold, and the second ones are underlined (PSNR/SSIM).

Datasets Scale Bicubic SRCNN [9] DRCN [10] VDSR [12]

Set5 ×2 33.66/0.9299 36.66/0.9542 37.63/0.9588 37.53/0.9587

×3 30.39/0.8682 32.75/0.9090 33.82/0.9226 33.66/0.9213

×4 28.42/0.8104 30.48/0.8628 31.53/0.8854 31.35/0.8838

Set14 ×2 30.24/0.8688 32.42/0.9063 33.04/0.9118 33.03/0.9124

×3 27.55/0.7742 29.28/0.8209 29.76/0.8311 29.77/0.8314

×4 26.00/0.7027 27.49/0.7503 28.02/0.7670 28.01/0.7674

B100 ×2 29.56/0.8431 31.36/0.8879 31.85/0.8942 31.90/0.8960

×3 27.21/0.7385 28.41/0.7863 28.80/0.7963 28.82/0.7976

×4 25.96/0.6675 26.90/0.7101 27.23/0.7233 27.29/0.7251

Urban 100 ×2 26.88/0.8403 29.50/0.8946 30.75/0.9133 30.76/0.9140

×3 24.46/0.7349 26.24/0.7989 27.15/0.8276 27.14/0.8279

×4 23.14/0.6577 24.52/0.7221 25.14/0.7510 25.18/0.7524

DIV2K val ×2 31.01/0.9393 33.05/0.9581 33.70/0.9619 33.66/0.9625

×3 28.22/0.8906 29.64/0.9138 30.15/0.9204 30.09/0.9208

×4 26.66/0.8521 27.78/0.8753 28.23/0.8835 28.17/0.8841

DRRN [11] B1U25 SRResNet [14] block×4 EDSR [16] block×4 ML-ResNet B4S2

Set5 ×2 37.74/0.9591 36.94/0.9537 37.64/0.9586 37.78/0.9589

×3 34.03/0.9244 33.08/0.9080 34.05/0.9234 34.13/0.9248

×4 31.68/0.8888 31.01/0.8733 31.90/0.8903 32.07/0.8921

Set14 ×2 33.23/0.9136 32.74/0.9087 33.29/0.9148 33.32/0.9153

×3 29.96/0.8349 29.43/0.8232 30.00/0.8367 30.04/0.8371

×4 28.21/0.7720 27.90/0.7620 28.37/0.7772 28.45/0.7786

B100 ×2 32.05/0.8973 31.58/0.8900 32.01/0.8975 32.11/0.8980

×3 28.95/0.8004 28.42/0.7853 28.91/0.8012 28.95/0.8021

×4 27.38/0.7284 27.11/0.7185 27.48/0.7329 27.54/0.7346

Urban 100 ×2 31.23/0.9188 29.84/0.9106 30.94/0.9262 31.17/0.9278

×3 27.53/0.8378 26.69/0.8141 27.59/0.8409 27.70/0.8440

×4 25.44/0.7638 25.01/0.7450 25.77/0.7755 25.94/0.7808

DIV2K val ×2 -/- 33.17/0.9582 34.36/0.9665 34.42/0.9667

×3 -/- 29.47/0.9120 30.66/0.9276 30.71/0.9283

×4 -/- 28.08/0.8818 28.84/0.8948 28.93/0.8962

it can slightly improve the performance of the model built with the proposed
residual blocks. This shows the validity of the multilevel residual structure to
some extent.

4.5 Comparison with Other Methods

In this section, we compare the proposed method with several typical methods
quantitatively and qualitatively. When evaluating on DIV2K-val, we followed the
way of EDSR/MDSR [16] to compute PSNR and SSIM; when testing on other
datasets, i.e., Set5, Set14, B100 and Urban100, we followed the calculation of
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DRCN [10]. Table 1 collects the quantitative results of the compared methods on
the benchmark datasets, where SRResNet (block×4) and EDSR (block×4) are
built with the structure shown in Fig. 2(a) and residual blocks shown in Fig. 1(b)
and (c) respectively, but the number of residual blocks is limited to 4. The visual
comparison is shown in Fig. 7. As we can see, ML-ResNet shows its superiority
to the compared methods. It is worth noting that we only used B4S2 structure
without ESC for comparison. Actually, the B2S4 structure perform better than
B4S2 and ESC can further improve the performance of the model.

However, when we increase the network depth and make it have the same
model parameters as the original EDSR, the performance of the proposed
method is slightly worse than the original EDSR. This indicates that directly
increasing the number of residual blocks to deepen the network will not get
the desired performance improvement, and the multilevel residual structure pro-
motes the propagation and the equilibrium of information flow through the net-
work just when the network is relatively shallow.

5 Conclusion

In this paper, we studied several commonly used residual blocks for single image
super resolution. Based on this, we proposed a new residual block structure and
a multilevel residual learning pattern (ML-ResNet). The proposed ML-ResNet
introduced fine-grained residual learning into the main path of a residual block
and coarse-grained residual learning (ESC) between the outermost layers of the
entire network. This multilevel residual structure seems to be helpful to simplify
the structure of feature maps at multiple abstract levels of the deep model and
promote the propagation and the equilibrium of information flow throughout the
entire network. It shows superior performance over several compared structures
when the entire network is relatively shallow. However, directly increasing resid-
ual blocks can not achieve the desired performance improvement, which may
imply that the depth and internal structure of a network are related.
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