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Wide Weighted Attention Multi-Scale Network for
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Abstract—High-quality magnetic resonance (MR) images af-
ford more detailed information for reliable diagnoses and quanti-
tative image analyses. Given low-resolution (LR) images, the deep
convolutional neural network (CNN) has shown its promising
ability for image super-resolution (SR). The LR MR images
usually share some visual characteristics: structural textures of
different sizes, edges with high correlation, and less informative
background. However, multi-scale structural features are infor-
mative for image reconstruction, while the background is more
smooth. Most previous CNN-based SR methods use a single
receptive field and equally treat the spatial pixels (including
the background). It neglects to sense the entire space and get
diversified features from the input, which is critical for high-
quality MR image SR. We propose a wide weighted attention
multi-scale network (W2AMSN) for accurate MR image SR to
address these problems. On the one hand, the features of varying
sizes can be extracted by the wide multi-scale branches. On
the other hand, we design a non-reduction attention mecha-
nism to recalibrate feature responses adaptively. Such attention
preserves continuous cross-channel interaction and focuses on
more informative regions. Meanwhile, the learnable weighted
factors fuse extracted features selectively. The encapsulated wide
weighted attention multi-scale block (W2AMSB) is integrated
through a recurrent framework and global attention mechanism.
Extensive experiments and diversified ablation studies show the
effectiveness of our proposed W2AMSN, which surpasses state-
of-the-art methods on most popular MR image SR benchmarks
quantitatively and qualitatively. And our method still offers
superior accuracy and adaptability on real MR images.

Index Terms—Magnetic Resonance, Super-Resolution, Multi-
Scale, Non-reduction Attention Mechanism, Weighted Fusion.

I. INTRODUCTION

Medical imaging, as a medical aid for diagnosis and treat-
ment, has become an indispensable step in current medical
detection. As a diagnostic imaging technique, magnetic res-
onance imaging (MRI) has been applied to various systems
of the whole body, such as the brain, soft tissues, and pelvic
cavity. Simultaneously, the early detection of lesion structure
of MRI can be more effective than computed tomography
(CT) [1]. However, due to hardware and physical equipment
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limitations, magnetic resonance (MR) images often have a
low spatial resolution during imaging of the operating organs
and lungs, resulting in unclear lesion display. High-resolution
(HR) MR images would provide more detailed structures and
textures, which benefit the accurate diagnoses and quantitative
image analyses. Still, the HR MRI often brings high scanning
time cost and low signal-to-noise ratio [2]. Therefore, the
popular single image super-resolution (SISR) method of recov-
ering HR image output from Low-Resolution (LR) input has
received widespread attention in medical image processing.

Image super-resolution (SR) is a typical ill-posed inverse
problem in the field of image processing. The difficulty lies in
how to recover local textures and microstructures in an image
accurately. Early in natural images, there were some interpo-
lation methods based on bicubic and reconstruction methods
such as iterative back projection (IBP) [3] and projections onto
convex sets (POCS) [4]. However, these non-learning methods
have higher requirements for the prior distribution of the image
itself, resulting in limited performance. Traditional learning-
based methods such as example learning [5], [6], dictionary
learning [7], [8] and other methods are difficult to learn enough
information. The disadvantages of these traditional methods
are more prominent in the application of medical images.
Medical images often contain rich textures and details, and it is
difficult to meet the constraints based on constant assumptions.
Therefore, the non-data-driven traditional restoration methods
have limited performance on medical images.

In recent years, the development of deep learning tech-
nology has made convolutional neural network (CNN) main-
stream, and it has also brought many advanced methods
for SR tasks of natural images [9]–[13]. The success of
these methods confirms the powerful ability of the end-to-end
learning method in image SR. Therefore, CNN-based methods
have also begun to be used for MR images [14]–[16]. Zhang
et al. achieved better SR performance with the dense residual
network (RDN) [17], which further explored deeper networks.
Li et al. proposed the multi-scale residual network (MSRN)
and make full use of features of different scales to solve
the problem of loss of detail features in images [18]. The
multi-scale dense cross network (MDCN) detects multi-scale
features and maximizes feature flow [19]. Yu et al. proved
that models with wider features before ReLU activation have
better performance and applied wide activation operation [20].
Medical images usually do not contain any color information
and have low contrast. Although CNN-based methods have
also begun to be used for MR images [14]–[16], the current
reconstruction results are far inferior to natural images. Some
recent innovative works in natural images SR provide new
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ideas for reconstruction of medical images.
However, those deep CNN-based methods either neglect

the characteristics of MR images or suffer from intrinsic
drawbacks of the network, which hinders obtaining excellent
SR results on MR images. We briefly summarize the existing
problems into the following three points:

Firstly, although a larger receptive field will capture more
features, the commonly used methods with a multi-level struc-
ture, such as repeated pooling and pyramid down-sampling,
will bring about more significant information loss. Only using
a single-scale convolution cannot obtain the diversity features
about different regions at the same depth of the network. Still,
simple concatenation of multi-scale convolution treats each
feature channel equally, hindering its representation ability.

Secondly, MR images have specific imaging features, such
as diverse structural patterns with rich details and an extensive
background region. Although the deep networks bring more
effective expression [21]–[24], some low-level structural infor-
mation tends to gradually disappear as the network deepens,
resulting in excessive smoothness in high-frequency areas and
increasing training difficulty. However, using residual learning
and dense connection repeatedly brings lots of representation
redundancy and extra computational costs.

Finally, there is a large background region in MR images,
which is far less informative than the target structural areas.
Meanwhile, the complexity of tissue texture is highly corre-
lated with its spatial position. If treating all the spatial pixels
of the MR image equally, the networks cannot distinguish
which part is more important for reconstruction. Besides, over-
reliance on convolution operations will focus too much on the
local neighborhood and fail to perceive the global receptive
field, limiting the representation ability of the network. The
previously proposed channel attention mechanism cannot cap-
ture the dependencies of all channels. It will destroy channel
correlation due to the reduction factor.

To address these problems and limitations, we propose a
wide weighted attention multi-scale network (W2AMSN) for
accurate MR SR. We show the main network architecture and
internal implementation details in Fig. 1. In summary, our
model has three notable contributions:

• Based on the characteristics of degraded MR images, we
assign learnable weights to branches of different receptive
fields. The adaptive multi-scale features can improve the
utilization of low-level and diverse information. Besides,
we apply channel widening to increase the number of
activated feature maps in the middle layer.

• We propose a multi-level attention mechanism with a
non-reduction channel attention block (NCAB) to utilize
features effectively. It allows the network to focus on
the features interaction in different areas. The mechanism
pays more attention to the informative regions (e.g., rich
textures and varying brightness) while suppressing useless
features (e.g., background and flat structure) adaptively.

• Extensive ablation study is conducted to demonstrate the
effectiveness of each component in the newly proposed
network. Quantitative and qualitative experimental results
show the superiority of W2AMSN over other advanced

CNN-based methods on MR, which achieves the state-
of-the-art performance on MR images SR.

The rest of this paper is organized as follows. Section II
briefly lists some recent research work and advanced meth-
ods related to image SR task. Section III introduces our
proposed method and some algorithm implementation details
specifically. The experimental results and the analysis of each
component are detailed in Section IV. Finally, the prospect of
future work and the conclusion of this paper are in Section V
and Section VI respectively.

II. RELATED WORK

A. Image Super-Resolution with Deep Learning
With the development of deep learning techniques, some

CNN-based methods are used to implement SR [25], [26].
Dong et al. firstly proposed super-resolution convolutional
neural network (SRCNN) [9] and then accelerated it with
fast super-resolution convolutional neural networks (FSR-
CNN) [10]. More improvements with larger depth and/or
width were further explored. The non-local means (NLM) [27]
method predicts pixels through global context information.
The residual learning is then used to deepen the network
and improve performance in the very deep super-resolution
(VDSR) [28] network. The RDN [17] combines dense connec-
tion and residual learning, making full use of the middle layer
features. The enhanced deep super-resolution (EDSR) [13] net-
work removes unnecessary batch normalization layers in the
residual structure, which reduces the model size and alleviates
feature redundancy. Some networks realize the fusion of multi-
scale features by fusing multiple receptive fields [18], [29]. To
distinguish the feature importance of different channels, the
residual channel attention networks (RCAN) use the attention
mechanism to learn cross-channel features adaptively [30]. Hu
et al. proposed the channel and spatial feature modulation
(CSFM) network to combine and distinguish spatially and
channel attention features adaptively [31]. The channel spilt
network (CSN) integrates residual learning and dense connec-
tions on dual paths, which improves performance and also
increases model complexity. The research of deep learning
on medical image SR is still in its infancy. Most existing
algorithms directly apply them piecewise to medical images
through a two-dimensional network [32], [33]. The degraded
medical image is not suitable for huge network training, so
customizing an efficient network structure according to MR
images’ characteristics is very important.

B. Multi-Channel Convolution
The proposed deep SR networks [11]–[13], [17] have

improved the accuracy of reconstruction compared to the
previous shallow networks [9], [10]. The increase in depth
brings better performance and brings more parameters and
more difficult training, requiring tricks and calculation re-
sources. Skip connections and layer concatenations have been
proven to utilize multi-level features more effectively. Zhang
et al. proposed a novel residual network of residual networks
(RoR) to explore the optimization capabilities of residual
networks [34]. The flattened convolution [35] turns the three-
dimensional convolution into a continuous sequence to reduce
the parameters significantly. And the group convolution [36]
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increase the correlation of the filter. Also, MobileNet [37]
introduced depthwise separable convolution instead of stan-
dard convolution. MobileNetV2 [38] put forward the reverse
residual structure and expanded the features before activation
for object detection and recognition. Some blocks that can re-
place the basic components in deep learning networks are also
designed for ”image-to-image” image restoration tasks [39].
Wide activation deep super-resolution (WDSR) [20] proves
that retaining wider features before the ReLU activation layer
is beneficial to preserve shallow information. We explore the
channel widening operation for accurate MR image SR.
C. Multi-Scale Feature Extraction Block

Some experiments have proved that multi-scale informa-
tion can effectively improve the performance of many tasks
[18], [19], [40], [41]. Segmentation and recognition tasks
usually utilize some operations (e.g., pooling layer and dilated
convolution) to increase the network receptive field. However,
down-sampling often causes information loss in SR tasks. The
inception block [40] proposed by Szegedy et al. is a multi-
size sparse structure to increase the aggregation of information.
They increase the width by increasing the number of nodes in
each layer and realize the optimum local combination in the
convolution network. When objects within a particular scale
are over-represented in the detection task, the imbalance on
the scale will affect the final detection accuracy. The pyramid
methods is proposed to capture the multi-scale features. So the
image pyramid [42], [43] and feature pyramid [41], [44] are
designed to extract cross-scale interactions globally. A mixture
of the two [45] is also proposed to alleviate the imbalance of
receptive field. The multi-scale residual network (MSRN) [18]
used channel concatenation to fuse the multi-scale features for
images SR, which cannot utilize valuable information adap-
tively. Simultaneously, as the network deepens, the problem
of gradually disappearing features has not been solved well.
D. Attention Mechanism in Super-Resolution

The recent development of neural network models shows
the importance of capturing the spatial correlation of data,
and the feature extraction capabilities can be improved by
embedding corresponding learning mechanisms [46]. Hu et
al. [47] proposed a ”squeeze-and-excitation” module to en-
hance learning ability by modeling channel dependencies. This
method uses global pooling (GAP) and channel deformation
to generate channel descriptors and recalibrate channel feature
maps. Later, a non-local recurrent network (NLRN) [48] added
a non-local operation to the neural network to capture the rele-
vance between neighborhoods. Zhang et al. [30] combined this
channel attention mechanism with the SR model to recover as
much informative features as possible, which further improved
the discriminative learning ability across feature channels.
Dai et al. [49] proposed a second-order channel attention
module (SOCA) for second-order feature statistics. However,
due to channel reduction factors, the serial correlation be-
tween channels is destroyed in these attention mechanisms.
Combining spatial attention and channel attention leads to a
large increase in parameters [31]. The multi-grained attention
networks (MGAN) makes full use of multi-scale and attention
mechanisms to calculate multi-granular context [50]. MR im-
ages have shared visual characteristics. Perceiving both global

and local attention mapping is conducive to restoring high-
frequency textures and essential edges, which has excellent
guiding significance in recovering physiological tissues.

III. PROPOSED METHOD

The overall architecture of our proposed W2AMSN is
shown in Fig. 1(a). The ultimate goal of the network is to
learn an end-to-end mapping from LR to HR, and the main
process is similar to other typical SR tasks. It consists of
the following three parts: shallow feature extraction (SFE),
wide weighted attention multi-scale feature fusion, and image
reconstruction. First, the shallow features of the LR image are
extracted through simple convolution layers and then output
to the subsequent stacked wide weighted attention multi-scale
blocks (W2AMSB). In the image reconstruction stage, the
wide weighted attention multi-scale features after the global
attention layer are used to predict the final SR image. As
shown in Fig. 1(b), the process inside the W2AMSB is mainly
divided into channel widening, attention multi-scale feature
extraction, and weighted branch fusion. Besides, for the model
to learn the shared information between the original LR and
SR image, we introduced local skip connection (LSC), and
global residual connection (GRC) [28].

A. Overall Network Architecture
1) Shallow Feature Extraction: As shown in Fig. 1(a),

the SFE includes three convolution layers, the size of the
convolution kernel is 3× 3, 1× 1 and 3× 3 respectively.
Define FS(·) as the corresponding fuction of SFE, the shallow
features xS extracted in the first stage can be expressed as:

xS = FS(x), (1)

where x represents the input LR image.
2) Wide Weighted Attention Multi-scale Feature Fusion:

The wide weighted attention multi-scale feature fusion part
consists of stacked W2AMSBs and the concatenation layer. We
define the function corresponding to the W2AMSB as FM(·).
Assume the number of W2AMSB in the entire network is t,
then the output of the i-th block of the network is

xi = F i
w(xi−1), i = 1,2, ..., t, (2)

where F i
w(·) corresponds to the i-th W2AMSB. The imple-

mentation details of F i
w(·) will be explained in Section III-B,

III-C and III-D. The input of the first W2AMSB is the output
of the SFE, ie x0 = xS. This process is executed iteratively,
and the output of the last W2AMSB is as follows:

xt = F t
w(xt−1) = F t

w(F
t−1
w (· · ·(F 1

w(x0)) · ··)). (3)

It should be noted that each output of W2AMSB is directly
served as the input for the next block without any transforma-
tion, which is also used as a component of the fused multi-
scale features, defined as xc. This combination helps the flow
of information in the network, which can be denoted as:

xc = [x0,x1, ...,xt ], (4)

where [...] means the concatenation.
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(a) The overall architecture of the proposed wide weighted attention multi-scale network

(b) The internal structure of each weighted attention multi-scale block
Fig. 1. The architecture of the proposed W2AMSN and the internal implementation details of the W2AMSB. (a) The overall structure of the proposed
network, which consists of convolution layers, stacked W2AMSBs, Concatenate, and Attention layer. Notice that GRC and LSC are used to improve network
information flow and stabilize training. (b) The W2AMSB is composed of three parts: channel widening, multi-scale attention feature extraction, and weighted
branch fusion. Images on the directed line visualize the feature maps in some intermediate layers, where a, 4a, and 8a represent the number of channels.

3) Image Reconstruction: In the image reconstruction
part, the process is divided into global attention remapping
and upsampling reconstruction. Firstly, the fused features are
remapped through the global attention layer to capture the
dependencies of all channels and retain features selectively.
The internal implementation details are shown in Fig. 2.
Specifically, the features respectively input the 1×1 convo-
lution layer through the upper and lower branches. Then, in
the upper branch, the global pooling layer and the softmax
function are used to obtain channel attention weights.

It should be pointed out that we use non-reduction channel
attention block (NCAB) to ensure the integrity of the channel
correlation. The dimension of the attention weight wa is
consistent with the number of channels of the input feature
map. Subsequently, the output weights are aggregated with
another branch, and residual connections are also introduced
at the end of the layer to learn attention mapping better. The
function is defined as FA(·), and the output is expressed as:

wa = So f tmax[G(Cu
1(xc))], (5)

FA(x) = wa⊗Cl
1(x)+x, (6)

xa = FA(xc), (7)

where xa is the fusion features after the global attention layer,
which will be used as input for the SR image prediction.
The G(·) denotes the global average pooling. The Cl

1(·) and
Cu

1(·) are 1× 1 convolution layers with channel number C,
and ⊗ means the Hadamard product. Normalization of the
attention weights will weaken the output response, so we use

element-wise add to combine the obtained attention feature
map with the input feature xc. Compared with the discrete
Sigmoid function, the Softmax function is a bit more ”soft”
and retains more dense related information between channels.

The original LR image is undoubtedly highly similar to
the HR image that needs to be restored, which indicates that
the two have a lot of shared information. We introduced the
GRC as a shortcut map to learn the residual information
between the original input xS and output xa. Here we use
a 1×1 convolutional layer defined as Cg

1 to adjust the number
of channels of the attention feature xa. The upsampling
reconstruction consists of two 3× 3 convolution layers and
a pixel-shuffle layer, being defined as function FR(·). Finally,
the reconstructed image can be obtained as follows:

y = FR(C
g
1(xa)+xS). (8)

We did not upsample the input LR image to the same size as
HR in advance but used the pixel-shuffle [51] to reconstruct
SR images at the end of the network. This module is not
limited to exponential magnification based on two. It can be
converted to any upscaling factor, which only needs to adjust
the structure to achieve a slow increase in resolution.
B. Channel Widening

Our proposed W2AMSB consists of three parts, and the
first part is the channel widening. For MR images, shallow
low-level visual information is critical for more accurate pixel-
level prediction. If an extended activation is performed before
the ReLU layer, more knowledge can pass to the subsequent
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TABLE I
PERFORMANCE COMPARISON OF BLOCKS REPRESENTING DIFFERENT

DOMAINS IN THE ORTHOGONAL ATTENTION MODULE.

Method Multi-scale Channel Widening PSNR/SSIM
Baseline 40.29/0.9765
+CW X 40.57/0.9831
+MS X 41.21/0.9864

+MS/CW X X 41.59/0.9901

network for dense pixel value prediction. To widen the feature
channel without increasing the number of parameters too
much, we use a multi-channel convolution layer.

As shown in Fig. 1(b), the input feature tensor of the i-th
W2AMSB is represented as xi−1, and we suppose the number
of channels is a. The feature maps are passed to the upper
and lower branches with the convolution kernel size 3 and 5,
respectively. We expand the feature map channel by increasing
the number of convolution kernels by four times, which can
achieve wider activation to keep more low-level features and
structural information. The process can be expressed as:

S1 = w4a
3 ×xi−1 +b1,

W1 = w4a
5 ×xi−1 +b1,

(9)

where w4a
3 and w4a

5 represent the weights for different convo-
lution kernels while the superscripts 4a represent the number
of output channels, and the b1 illustrates bias of the current
layer. In Section IV-D, we specifically analyzed the impact of
channel widening on network performance. As can be seen
from Tab. I, more reservation and forward transmission of
low-level features of MR images after channel widening can
effectively improve the accuracy of image SR.

C. Attention Multi-scale Feature Extraction
Recent work proved that blindly pursuing the depth of the

network cannot effectively improve the network performance,
so some networks with the structure of extracting multi-scale
features are designed to explore information from the spatial
domain further. Inspired by this, for MR images, we propose a
method to extract the multi-scale features of attention interest,
which can capture rich details of different sizes adaptively and
efficiently focus on more informative regions.

For the wide activation features extracted from branches
at various scales, we first use the ReLU layer for nonlinear
activation. The outputs from two branches are concatenated
for information interaction, which is beneficial to capture the
contextual correlation of multi-scale features. The σ(·) stands
for the ReLU function. As shown in Fig. 1(b), the number
of feature channels after branch aggregation changes from 4a
to 8a, and the intermediate features transmission is performed
through convolution layers with respective sizes. The outputs
are defined as S2 and W2, which can be formulated as:

S2 = w8a
3 × [σ (S1) ,σ (W1)]+b2,

W2 = w8a
5 × [σ (W1) ,σ (S1)]+b2,

(10)

where w8a
3 and w4a

5 represent the weights of convolution layers
while the superscripts 8a represent the number of output
channels, and the b2 depicts the bias of the current layer.
As shown in Tab. I, using multi-scale interactive convolution
features can effectively improve network performance.

Fig. 2. The internal implementation details of NCAB in Fig. 1(b). The block
has no channel reduction operation. And the dimension of attention vector is
C, which is the same as the number of channels of the input feature map.

Besides, both S2 and W2 contain features of different sizes
and regions extracted by the corresponding branch, which
include some high-frequency textures and edges. The function
FA(·) correspond to the attention layer shown in the Fig. 2.
Non-reduction attention maintains continuous correlation be-
tween channels and focuses on more significant details while
suppressing some low-frequency and useless information, and
the output can be defined as:

S3 = FA (S2) ,

W3 = FA (W2) .
(11)

D. Weighted Branch Fusion
Skipping connections between residual layers will cause

representation redundancy. The fusion method selects the
activated features adaptively according to the importance
of each branch. In the i-th W2AMSB, we introduced two
learnable parameters λ i

1 and λ i
2 to recalibrate the response of

each branch. Meanwhile, we use the 1× 1 convolution layer
followed by the weighted branch concatenation to integrate
features and channel reduction, which facilitates adapting to
iterative learning and saves computation cost greatly. The
channels of the input S3 and W3 is 8a, and the output after
weighted branch fusion can be expressed as:

S′ = wa
1×

[
λ

i
1S3,λ

i
2W3

]
+b3. (12)

The weights of 1×1 convolution are denoted as wa
1 while the

superscripts a represent the number of output channels. The
b3 represents the bias of the current layer. In Section IV-D2,
we compared the performance of different scale branches
while also proving the superiority of weighted fusion in fully
exploiting model capabilities additionally.

The cross-layer shortcut connection can not only promote
the information integration between layers, but also stabilize
the training. Therefore, in order to prevent network degrada-
tion and retain original information flow effectively, we adopt
locak skip connection (LSC) to each W2AMSB as below:

xi = S′+xi−1, (13)

where xi and xi−1 represent the input and output of the i-th
W2AMSB. The shortcut connection here can be considered as
a local residual learning realized by the element-wise addition.

It is worth mentioning that LSC and the GRC in the overall
network constitute a multi-level residual mechanism [52],
which is proved to stabilize training and improve model
performance. The cross-layer connection between farther apart
layers is more conducive to retaining prior information in LR
images. Experiments have shown that local skip connection
can alleviate the model training instability problem caused by
the degradation of MR training samples.
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TABLE II
MODEL SIZE COMPARISON ON T2 FOR SR ×2.

Methods Parameters Mult-Adds PSNR/SSIM
SRCNN [9] 222.79K 3.26G 37.12/0.9761
VDSR [28] 1.40M 20.19G 37.67/0.9783
RDN [17] 22.12M 318.43G 37.95/0.9795
EDSR [13] 3.14M 722.61G 37.56/0.9774
RCAN [30] 15.44M 220.34G 37.88/0.9793
CSFM [31] 24.87M 397.64G 38.06/0.9802
W2AMSN-S 5.93M 85.33G 38.31/0.9817
W2AMSN 11.67M 167.91G 38.67/0.9823

E. Training Objective
The goal of our proposed W2AMSN is to learn the end-

to-end mapping function FW 2AMSN between the LR image
and the HR image. The model parameters are determined
by minimizing the loss between the reconstructed image and
the ground truth. Given a training dataset {ILR

i , IHR
i }N

i , where
N is the total number of the training set. The most widely
used loss functions in SR are aiming to minimize mean-
square error (MSE) and L2 loss. Although these methods can
maximize the peak signal-to-noise ratio (PSNR), they tend to
make the high-frequency details in images smooth excessively,
which will seriously damage the visual reconstruction result.
Many superior loss functions have been proposed in the super-
resolution work of natural images to improve network perfor-
mance. However, for medical images, perceptual loss [53] and
the generative adversarial learning [54] will bring distortions
in texture and structure, which poses risks for the subsequent
precise diagnosis and analysis. To make a fair comparison
with existing methods, we finally chose the L1 loss function
to guide model optimization:

L(θ) =
1
|N|

|N|

∑
i=1

∥∥IHR
i −FW2AMSN

(
ILR
i ;θ

)∥∥
1 , (14)

where θ denotes the parameters of our model, IHR
i is the

ground truth corresponding to ILR
i . When using degraded

MR training samples, the training process limited by L1 loss
converges faster and more stable in the experiment.

IV. EXPERIMENT

In this section, we first briefly introduce the datasets used
in this work and the model implementation details. Then
several state-of-the-art SR methods are compared with the
proposed model. Next, we perform a series of ablation experi-
ments to investigate and analyze the structure of our W2AMSN
model. We adopt PSNR, and structural similarity index metric
(SSIM) [33] as the quantitative evaluation metrics.
A. Datesets

The datasets used in this paper are the same as and derived
initially from the IXI dataset download from http://brain-
development.org/ixi-dataset/, which consists of three types of
MR images (578 PD volumes, 581 T1 volumes, and 578 T2
volumes). We divide the dataset into three parts in proportion,
each of which has 500, 70, and 6 MR volumes for model
training, testing, and quick validation, respectively. The size
of each 3D volume is cut to 240×240×96 ( height× width×
depth) for three different upscaling factors (×2, ×3 and ×4),
where 96 indicates the number of slices in the MR volume.
Note that the datasets used in the experiment contain two kinds
of image degradation, but only the typical bicubic degradation
is studied detailedly in this paper due to limited space.
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(b) Model comprehensive analysis.
Fig. 3. Model analysis and comparison between several leading networks on
T2 dataset for SR ×2. (a) Model performance and size of different models.
(b) The comprehensive analysis of the model size and interface speed.

B. Implementation Details
We specify the implementation details of our proposed

W2AMSN.The configuration of our final model is shown in
Fig. 1, we insert 20 Wide Weighted Attention Multi-scale
Block (W2AMSB, t = 20). and the number of input channels
of each W2AMSB is 32 (a=32). Therefore, the number of
output feature channels of the middle layer inside the block
will also be widened (4a=128, 8a=256) correspondingly. For
convolution layers with kernel size 3×3 and 5×5, the zero-
padding strategy is used to keep the size fixed. We initialize
the learnable weight coefficients of multi-scale branches to
{λ1 = 1, λ2 = 1}. In each training batch, 96 LR patches with a
size of 32×32 are extracted as inputs. Our model is trained by
ADAM optimizer [9] with β1 = 0.9, β2 = 0.999, and ε = 10−8.
The learning rate is initialized as 10−4 and then decreases to
half every 200 epochs. We implement all models with the
Pytorch framework and train them on NVIDIA GeForce GTX
1080 Ti GPU for a thousand epochs.
C. Comparison with Other Methods

In this subsection, for the purpose of illustrating the
effectiveness of the proposed W2AMSN on MR image SR
tasks,we compare the proposed method with several advanced
techniques, inlcuding NLM [27], SRCNN [9], VDSR [28],
RDN [17], EDSR [13], RCAN [30] and CSN [52].

1) Quantitative Comparison: As shown in Tab. III, we
exhibit the quantitative results of the compared methods on the
IXI dataset. W2AMSN represents the results directly obtained
by our model, and W2AMSN+ indicates that geometric self-
ensemble [13] is applied. It can be seen that the proposed
W2AMSN model outperforms other state-of-the-art methods
by a large margin, giving the best SR performance on all types
of MR images (PD, T1, and T2) and all SR scaling factors
(×2, ×3, and ×4), even without geometric self-ensemble.

Specifically, we analyze the size and inference speed of the
model and compared it with other advanced image SR methods
on T1 dataset for SR ×2. The quantitative comparison results
are reported in Tab. II. Parameters represent the number of
parameters in the model. The parameters determine the size
of the model and also affect the memory usage during model
inference. Mult-Adds represents two arithmetic operations in
model calculations, including multiplication and addition oper-
ations. It is a quantitative metric for evaluating model calcula-
tion costs and inference speed. Different attention mechanisms
focus on more informative areas in different ways. Channel
attention focuses on ”what” is a meaningful input image, while
spatial awareness focuses on ”where” is the most informative
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TABLE III
QUANTITATIVE COMPARISON BETWEEN DIFFERENT SR METHODS. THE MAXIMAL PSNR (DB) AND SSIM VALUES OF EACH COMPARISON CELL ARE

MARKED IN BOLD, AND THE SECOND ONES ARE MARKED IN underline (PSNR / SSIM).

Data Scale Bicubic NLM [27] SRCNN [9] VDSR [28] RDN [17] EDSR [13] RCAN [30] CSN [52] W2AMSN W2AMSN+

PD
×2 35.04/0.9664 37.26/0.9773 38.96/0.9861 39.97/0.9861 40.31/0.9870 39.87/0.9857 40.57/0.9871 41.28/0.9895 41.59/0.9901 41.72/0.9903
×3 31.20/0.9230 32.81/0.9436 33.60/0.9516 34.66/0.9599 35.08/0.9628 34.39/0.9678 35.06/0.9682 35.87/0.9693 36.22/0.9717 36.42/0.9726
×4 29.13/0.8799 30.27/0.9044 31.10/0.9181 32.09/0.9311 32.73/0.9387 31.80/0.9284 32.58/0.9367 33.40/0.9486 33.72/0.9524 33.98/0.9543

T1
×2 33.80/0.9525 35.80/0.9685 37.12/0.9761 37.67/0.9783 37.95/0.9795 37.56/0.9774 37.88/0.9793 38.27/0.9810 38.67/0.9823 38.75/0.9825
×3 30.15/0.8900 31.74/0.9216 32.17/0.9276 32.91/0.9378 33.31/0.9430 32.76/0.9347 33.18/0.9396 33.53/0.9464 34.00/0.9509 34.12/0.9518
×4 28.28/0.8312 29.31/0.8655 29.90/0.8796 30.57/0.8932 31.05/0.9042 30.46/0.8902 30.85/0.8965 31.23/0.9093 31.84/0.9196 31.99/0.9215

T2
×2 33.44/0.9589 35.58/0.9722 37.32/0.9796 38.65/0.9836 38.75/0.9838 38.28/0.9824 39.24/0.9841 39.71/0.9863 40.22/0.9873 40.35/0.9875
×3 29.80/0.9093 31.28/0.9330 32.20/0.9440 33.47/0.9559 33.91/0.9591 33.15/0.9528 33.85/0.9574 34.64/0.9647 35.02/0.9672 35.21/0.9682
×4 27.86/0.8611 28.85/0.8875 29.69/0.9052 30.79/0.9240 31.45/0.9324 30.52/0.9198 31.60/0.9298 32.05/0.9413 32.37/0.9453 32.62/0.9473

Fig. 4. The visual comparison between several advanced CNN-based SISR methods on a PD image (top) , T1 image (middle), and T2 image (bottom) with
scaling factor SR×4. The maximal PSNR (dB) and SSIM values for each displayed image are marked in bold.

part. RCAN [30] is a network that uses channel-wise attention
and CSFM [31] is a network that uses spatial attention. It can
be seen that the spatial attention used in CSFM calculates the
global correlation, which will significantly increase the model
complexity and parameters. Our method utilizes moderate-
scale parameters and supports fast model inference. To com-
pare with the lightweight model, we built a small W2AMSN-
S model with only 8 W2AMSBs, and the simplified model
achieves comparable SR performance.

As shown in Fig. 3, we compare the performance, size,
and interface speed of different models comprehensively to
evaluate the model efficiency. In Fig. 3(a), the horizontal axis
is the number of parameters, and the vertical axis is the PSNR
value. The W2AMSN model we proposed achieves the best

performance, and the lightweight W2AMSN-S model with
fewer parameters also achieves significant PSNR gains. We
consider both model size and interface speed to evaluate model
efficiency in Fig. 3(b). It can be seen that our W2AMSN
has a lower parameter amount and a higher inference speed.
Our method has a better trade-off between model complexity
and performance while ensuring the highest SR performance,
which indicates that our model is not only a high-precision
MR image SR method but also a highly practical one.

2) Visual Comparison: Fig. 4 shows the visual result of
the compared methods listed in Tab. III, on the PD (top), T1
(middle), and T2 (bottom) images with SR×4 respectively.
As can be seen, the proposed W2AMSN model displays
significantly visible superiority over other methods. For ex-
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(a) Impact of different components in the network (b) Impact of different multi-scale structures (c) Impact of building blocks (t)
Fig. 5. Validation PSNR curves for different ablation experiments. (a) The comparison between the impact of using only one or both of MS and CW on
network performance carried out on PD for SR×2. (b) The performance comparison between the different multi-scale branch structures shown in Fig. 6 on
T1 for SR ×2. (c) The performance comparison between the models with different number of W2AMSB on T2 for SR ×2.

TABLE IV
QUANTITATIVE RESULTS OF ABLATION STUDY ON DIFFERENT

COMBINATIONS OF THE NUMBER OF CHANNELS ON PD FOR SR ×2.
CW Scale Factor Input-Middle-Output PSNR/SSIM

0 1 32-32-32 38.74/0.9783
0 1 64-64-64 39.19/0.9854
1 2 32-64-32 40.28/0.9883
1 2 64-128-64 41.53/0.9895
1 4 32-128-32 41.59/0.9901
1 4 64-256-64 41.63/0.9902

ample, in the PD image, there is a black line indicated by
the red arrow. This structure is almost completely lost in the
results of Bicubic, NLM [27], SRCNN [9], VDSR [28], and
even RDN [17]. Although it can be observed in the results
of EDSR [13] and CSN [52], our model presents a clearer
indication and better approximation to the ground truth. A
similar comparison can also be seen from the results of the
T2 images. In the area marked by the red arrow, the result
of CSN is slightly better than other methods that do not
reconstruct the texture. However, it should be noted that in the
ground truth, the two thin white lines are disconnected, but
the reconstruction of CSN connects the two lines smoothly,
which is a wrong distortion. In the same position, we can
see that our method reconstructs the truncated texture well,
which illustrates the superiority of the proposed W2AMSN in
restoring important structural details in MR images.

D. Ablation Study
1) Channel Widening and Multi-scale Branch: To verify

the impact of multi-scale (MS) and channel widening (CW)
mechanisms on network performance, we built a ”baseline”, in
which all CW convolutions and MS branches are replaced by
unexpanded filters and single-scale branch, respectively. We
conduct the ablation test using only one or both of MS and
CW carried out on PD for SR×2 specifically. The notations
and quantitative results are shown in Fig. 5(a) and Tab. I. It
can be seen that the simple addition of CW operation has
a slight improvement in the SR performance, which proves
that the wide activation can retain more low-level features in
MR images. The MS mechanism boosts model performance
effectively, achieving a performance of 0.9dB compared with
baseline. Using CM and MS simultaneously can contribute
most (1.3dB) to the improvement of PSNR/SSIM values and
make the model training more stable.

As shown in Tab. IV, we analyzed the effects of the dif-
ferent settings of the number of channels on the PSNR/SSIM
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(d) K3K5-W

Fig. 6. Different structures of multi-scale convolution combinations for feature
extraction.(a) K3K3 without weighted fusion (b) K5K5 without weighted
fusion. (c) K3K5 without weighted fusion. (d) K3K5 with weighted fusion.

quantitatively. In the first column of the Tab. IV, ”0” represents
that no channel widening operation is performed. In contrast,
”1” represents the widening of the output channel in the
middle layer, and we set different channel expansion scale
factors. From the reconstruction evaluation results, it can be
seen that the network performance increases as the number
of input channels increases. It is a common observation
where 64 channels would achieve better performance than
32 channels in image SR. However, even if the number of
input channels is 32, we can obtain higher performance by
doubling the middle layer channels to 64 and reducing them
to 32. Such an observation proves that the channel widening
and compression is more effective than directly increasing the
channel number. Also, for different inputs, the wider the input
feature map, the greater the expansion factor, and the better the
network performance. More importantly, the channel reduction
before the output can retain the advantage of wide activation
without adding too many parameters. Although the best SR
performance is achieved when the number of input channels
is 64 and the expansion factor is 4, the final network still
chooses the setting rule of 32-128-32, considering the trade-
off of parameters and training speed.

2) Weighted Multi-Scale Convolution: Our proposed MFF
can be configured with a different branch structure. To future
explore the capability of the module specifically, we design
four different combinations of convolution receptive field and
fusion methods (see Fig. 6). It should be noted that only the
modified convolution layer and other necessary connections
are plotted for simplified representation. The K3K3 in Fig. 6(a)
represent the structure that the upper and lower branches both
have 3×3 convolution kernels while the K5K5 structure in
Fig. 6(b) change the size from 3 to 5. The K3K5 structure
in Fig. 6(c) represents the upper and lower branches that have
different convolution receptive fields. Besides, for investigating
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Fig. 7. The visual comparison between output feature maps of convolution
layers at different locations on 3×3 convolution layer (top), 5×5 convolution
layer (middle), and multi-scale feature fusion layer (bottom).

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT ATTENTION MECHANISMS.

Method Baseline + CAB + NCAB
PSNR/SSIM 31.34/0.9294 32.05/0.9374 32.37/0.9453

the weighted fusion impact, we add weighted fusion operation
to K3K5 shown in Fig. 6(d), which is denoted as K3K5-
W. The performance of these four compared structures on
the validation set (T1, ×2) is shown in Fig. 5(b). We can
observe that K3K5 has significantly better performance than
K3K3 and K5K5, which shows the superiority of the mixed
scales. The blue curve (K3K5-W) is the result after adding
the learnable weight factors, and it achieves a gain of about
0.15dB compared with the unweighted red curve (K3K5).
Such comparisons indicate that weighted fusion is indeed
conducive to boost performance.

To better explain the superiority of mixed-scale convolu-
tion, we analyze the middle layer of the first W2AMSB module
and visualize the feature maps at three locations, including two
sizes of convolution layers and the concatenation layer after
fusion. As shown in the Fig. 7, it can be seen that the layer with
a convolution kernel size of 3 pays more attention to extracting
local details while the layer of 5 has a better response to
structural textures. Furthermore, the integrated global features
combine the advantages of the two scales. Consequently, the
edges and detail textures are more precise.

3) Network Depth: It is reasonable that more parameters
will bring better networkability of model fitting, but it also
means that the network training will require more resources
and a longer time. In this part, we analyze the model perfor-
mance with different values of t (the number of W2AMSB),
which is the main parameter that determines the depth of the
overall network. Also, there are five fixed convolution layers
at the beginning and end of the proposed network. Thus, the
depth of the overall W2AMSN is given by:

D = 5t +u+5, (15)

where u is the depth of the pixel-shuffle layer, which depends
on the value of upscaling factor [13]. The ablation experiment
is based on the T2 image dataset with an upscaling factor of
2 (u = 1). As shown in Fig. 5(c), when t = 5, the performance
of the network has exceeded the baseline. The small network

TABLE VI
PERFORMANCE COMPARISON OF ATTENTION COMBINATIONS AT

DIFFERENT LOCATIONS IN THE NETWORK.
Method Block Attention Network Attention PSNR/SSIM
A 31.34/0.9294
B X 32.12/0.9416
C X 31.98/0.9368
D (Ours) X X 32.37/0.9453

can be used to achieve a better trade-off between model size
and performance. The PSNR increases as t increases. But the
convergence speed will not slow down as the network deepens,
and the training process is relatively stable. It indicates that
the idea of multi-scale feature weighted fusion helps to offset
the limited reception field of a relatively small network.

4) Attention Mechanism: As shown in Fig. 1, we perform
the attention layer to two positions of the network, one is
at the multi-scale attention feature extraction stage of each
W2AMSB, and the other is at the end of the overall W2AMSN
to guide the image reconstruction. We compare the perfor-
mance between the proposed NCAB and the channel attention
block (CAB) proposed in RCAN. The baseline module is built
by removing the attention layer. The results in Tab. V show the
advantages of NCA, which has achieved a higher improvement
(1dB) compared to the baseline.

We train the model that combines different attentions on
the T2 dataset with SR ×4. The performance comparison
results after 400 iterations are reported in Tab. VI. The block
and network attention represent the attention layer at each
W2AMSB and the end of the network, respectively. Method A
is the baseline without the attention mechanism. The feedfor-
ward network could less recognize these informative patterns
and textures without any attention block. The results in the
first three rows prove the effectiveness of the non-reduction
attention mechanism in both block and network, as each of
them brings improvement over the backbone. Obviously, the
network with multi-level attention is able to obtain the best
performance and increase the highest PSNR from 31.34 dB to
32.37 dB, thus achieving a significant improvement.

5) Performance on in-vivo Images: We also perform SR
experiments on two in-vivo T1 images collected from Alltech
Medical Systems Co., LTD. These images were from real
MRI scanners without any additional preprocessing. In this
case, the ground truth HR image is not available, and the
image degradation is also unknown. We visually compare
the reconstructed T1 images processed by different models
with SR ×4, including NLM [27], SRCNN [9], VDSR [28],
RDN [17], EDSR [13], and CSN [52]. As shown in Fig.8,
our W2AMSN model can recover more sharp edges and finer
details in real LR MR images compared with other state-
of-the-art methods. Clearer and richer structural textures are
beneficial to supplement image information, which is of great
significance for MR imaging in practical clinical applications.

6) Attention Visualization: The class activation map
(CAM) [55] is originally used for image classification, rep-
resenting the weighted linear sum of the existence of visual
patterns in different spatial positions. The CAMs help show
which areas the model focuses on by mapping the response of
the feature map to the original image. The feature maps from
the last convolutional layer in the SR network are globally
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Fig. 8. The visual comparison on the SR performance between several state-of-the-art SR methods on in-vivo T1 MR images with SR ×4. In this case, the
ground truth HR images are not available. We cropped and enlarged the blue and red boxes in the original LR images to get a clearer visual experience.

(a) The CAM visualization before and after the 8-th W2AMSB.

(b) The CAM visualization before and after the global attention.

Fig. 9. The visualization of CAM before and after the attention layer in
two different locations. Noticed that the significant discriminative regions are
marked as highlighted, where red means significant, orange, green, and blue
indicate that the importance gradually decreases in order.

pooled to obtain the corresponding weight and remapped to
the original feature map. To get a deeper understanding of the
importance of modeling channel correlation in MR images, we
visualized the CAM diagrams before and after the attention
layers in two different locations, shown in Fig. 9. Besides,
we add detailed comparison and quantitative analysis of local
activation regions in Fig. 9(b). CAM shows the degree of
saliency of the area in a special highlight form. Red regions

Fig. 10. Visual comparison on the SR performance of whether branch
weighting factors are added. Note that the two rows in each of the four red
bounding boxes represent different results of the same image (PD × 2), which
use fixed coefficients (top) or learnable weighting factors {λ1, λ2} (bottom).

mean very important, and orange, green, and blue indicate that
the importance gradually decreases in order.

Firstly, we can see from the Fig. 9(a) that the feature
response after the attention layer inside the W2AMSB has
extracted more repeating structural patterns and detailed high-
frequency textures. It is worth mentioning that the attention
layer can explicitly model the connection of contextual infor-
mation. So it can capture a broader range of useful features and
suppress less useful ones. The same is the attention layer at
the end of the W2AMSN. In Fig. 9(b), we enlarge and analyze
the areas where the activation weight changes significantly.
We visualize the area within the red bounding box in the
original image to reflect local features. Then, we select the
room with a size of 5×5 (marked with the yellow bounding
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box) and analyze the activation weight quantitatively. The
results show that for the richly structured position, the red
highlight information area is expanded. On the contrary, the
importance of some less relevant regions is reduced. This
observation indicates that the global attention mechanism is
more conducive to capturing salient regions on a larger scale.
It is more concentrated in high-frequency and structure-rich
locations while weakening the attention of some flat areas.

7) Adaptive Weighted Fusion: This part of the experiment
is mainly analysis the difference in visual reconstruction re-
sults with or without the learnable weight coefficients of each
branch in W2AMSB. In the unweighted case, we initialize
λ1 = λ2 = 1, which are constant and no guidance for the
fusion of features from different branches. From the visual
comparison of each sub-picture in Fig. 10, we can see that
weight factors help improve visualization performance. In the
marked position of red bounding boxes, more rich details
are reconstructed, especially in some high-contrast locations,
such as edges and tissues. The apparent differences in proton
density and the apparent signal intensity help the doctor
quickly distinguish different pathological tissues and make a
qualitative diagnosis. Therefore, the feature visualization re-
sults indicate that weighted branch concatenation is beneficial
to enhance the capacity of the model.

V. DISCUSSION AND FUTURE WORK

A. Image Texture Restoration
Structural edges and textures in MR images are usually

important information used to distinguish different tissues and
lesions. However, in deep super-resolution networks, some
low-level structural information will gradually disappear as the
network deepens, resulting in excessive smoothness in high-
frequency regions. Therefore, how to retain more structural
features is the focus of our next work. At present, in natural
images, generative adversarial networks (GAN) [54] have
superior performance in texture restoration, but the learning
method of generating pixels is risky in medical images. We
hope to preserve more useful features in future work by
preprocessing the LR images with structural enhancement.

B. 3D Image Super-Resolution
The current work on MR image super-resolution is mainly

for 2D format. Still, since many types of medical images are
in 3D format, the spatial correlation information will be lost in
splitting channels. There are already some methods to prove
the scalability of CNN networks on 3D images [14], [15],
[56], [57]. Our next work is to explore the performance of our
W2AMSN on 3D MR images. Making certain modifications
to the network structure to use the 3D structure information
rationally makes it possible to enhance the SR performance
without introducing too many parameters.

C. More Efficient and Lightweight Networks
In the current image super-resolution methods using deep

learning, performance improvement is often accompanied by
the rapid growth of the network depth and the parameters.
Those larger networks have high requirements on the mem-
ory and processor performance of the device. Although our
network will not introduce explosive parameter growth in

the deepening process, 3D image training will lead to some
problems (e.g., model storage and model prediction speed).
SqueezeNet [58], MobileNet [37] and ShuffleNet [59] obtained
lightweight models by changing the convolution method. We
will devote ourselves to designing more efficient computing
methods for model compression to reduce network parameters
without losing network performance in future work.

D. Real MR Image Super-Resolution
The synthetic MR datasets are based on the known down-

sampling method, and the low-quality real MR image contains
a variety of unknown complex degradations. Therefore, the
network performance based on the synthetic MR images is
easily limited by the type of training dataset. Although the
proposed method shows good adaptability on real in-vivo
T1 images, there is still much room for improvement in the
network mobility in the real world. In the future, we consider
collecting LR-HR image pairs from real MR scanners to
fine-tune the existing network, which can benefit the clinical
application of deep learning-based MR SR methods.

VI. CONCLUSION

The main obstacle to applying deep models to MR image
SR tasks is that the models cannot learn efficient expressions
from limited data. The low utilization of the extracted features
cannot guide the reconstruction of the fine structure. Multi-
scale feature fusion can extract high-level semantics and low-
level textures. A robust attention mechanism can further in-
crease the model’s ability to adapt to dense channel correlation
selectively. Based on MR images sharing specific visual char-
acteristics, we propose a wide weighted attention multi-scale
model in this paper. Unlike simply concatenating the features
of each scale, we design an adaptive non-reduction attention
mechanism and learnable weighted feature fusion in each
block. Considering the repeating structure and simple distribu-
tion of MR images, we use channel widening to improve the
feature representation ability efficiently. Mixed self-attention
includes local and global attention layers, allowing the model
to accurately restore high-frequency distinctive structural tex-
tures in MR images. Furthermore, multi-level residual learning
and residual scaling are introduced when stacking W2AMSB,
which can stabilize network training. Extensive experiments
and ablation studies verify the advantages of the proposed
W2AMSN over other state-of-the-art methods, quantitatively
and qualitatively. The superior reconstruction performance on
real in-vivo MR images proves that our W2AMSN has high
clinical applicability and domain adaptability.
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