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ABSTRACT

For magnetic resonance (MR) images sharing visual charac-
teristics, the internal structure repetitions of different scales
are considerable image-specific priors. Following the tradi-
tional algorithms, we try to combine external dataset-driven
learning with the internal self-similarity for MR image super-
resolution (SR). We propose a pyramid orthogonal attention
network (POAN) based on dual self-similarity. On the one
hand, by combining the point-similarity and the pyramid-
similarity, sufficient spatial autocorrelation is explored to al-
leviate less training data limitation. On the other hand, the
non-reduction channel attention mechanism maximizes inter-
channel dependence. It increases the probability of the high-
frequency region (e.g., structural textures and edges) being
activated while suppresses low-frequency regions (e.g., back-
ground) adaptively. Out proposed POAN reconstructs the MR
image under the guidance of pyramid orthogonal attention.
Extensive experiments demonstrate that our method obtains
the best results compared with state-of-the-art MR image SR
methods quantitatively and visually.

Index Terms— Magnetic resonance (MR) images, super-
resolution, self-similarity, pyramid orthogonal attention

1. INTRODUCTION
Compared with other medical images, high-quality MR im-
ages has good imaging resolution for small structures and de-
tailed textures. So they are more suitable for clinical diagno-
sis and quantitative image analysis [1]. However, due to hard-
ware limitations, the higher the resolution of the output MR
image, the longer the scanning time required and the more ex-
pensive imaging physical equipment. In recent years, single-
image super-resolution (SR) technologies have achieved ex-
cellent performance on natural images. However, its role in
medical image super-resolution has not been explored exten-
sively. For balancing cost and imaging quality, it is essen-
tial to use the advanced SR method to restore high-resolution
(HR) MR images from low-quality images accurately [2].

The pattern repeatability prior in images has been proved
to be important guidance in image restoration. There are

(a) Point SS (b) Patch SS (c) Pyramid SS (d) Dual SS

Fig. 1. Different self-similarity (SS) structures comparison.
many good attempts in traditional methods to utilize the prior
knowledge of image [3,4]. Subsequently, self-similarity (SS)
as an important natural property in images extensively ex-
plored on image SR tasks [5–7]. Relying on its powerful
learning and expression capabilities, the convolutional neu-
ral network (CNN) shows great superiority over traditional
algorithms in extracting image SS. NLRN [8], RNAN [9],
and SAN [10] incorporate point-similarity features. Mei et
al. proposed the pyramid attention [11] and further explored
the cross-scale non-local SS in the deep network [12]. Due
to the imaging characteristics of human tissues, MR images
have various repeatable structure redundancy. So extracting
rich SS information can improve SR performance and reduce
the excessive model dependence on external datasets.

Different self-similarity structures search different match-
ing targets. We compare different SS extraction structures
in Fig 1. The non-local attention at a fixed scale limits the
search area. As shown in Fig 1(a), the point SS calculates
pair-wise pixel correlation and captures the long-range depen-
dence of the entire image. The patch SS in Fig 1(b) computes
pair-wise patch correlation on a single scale. The pyramid
SS shown in Fig 1(c) expands the patch search space from a
single feature map to a multi-scale feature pyramid for bet-
ter matches. However, the multi-scale pyramid attention fo-
cuses more on large-scale SS with regular shapes, which is
very unfavorable for MR images that contain rich details and
changeable micro-structures. Existing methods that separate
the point SS and patch SS will lose the feature specificity of
MR images. Therefore, we explore an efficient way to com-
bine point-similarity and multi-scale patch-similarity simul-
taneously. As shown in Fig 1(d), the dual SS computes pair-
wise pixel correlation and pair-wise patch correlation on the
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pyramid scale. The point-similarity helps reconstruct sub-
tle structural textures, and the single-scale patch-similarity
avoids errors caused by pixel-by-pixel matching. The multi-
scale dual SS fusion mechanism tends to find the best matches
of cross-scale correlation patches faster.

Extensive background area in MR images will interfere
with SS feature extraction in salient regions. The existing
spatial attention mechanism treats the high-frequency textures
and low-frequency backgrounds equally, which will bring
feature redundancy. It is difficult for the network to pay more
attention to sophisticated textures. Although the channel at-
tention mechanism can distinguish salient features adaptively,
most models use channel reduction operations to reduce com-
plexity [13, 14]. We find the sudden channel narrowing in the
middle layer will destroy the dense channel correlation and
prediction accuracy. So we design the non-reduction chan-
nel attention block (NCAB) to preserve the non-linear cor-
relations and evaluate spatial SS importance. Besides, MR
images lack color information and contain rich local texture
details with variable gradients. Compared with the first-order
global pooling, the high-order statistics are more capable of
discovering high-frequency features [10]. Therefore, we re-
place the global pooling with covariance pooling. The proba-
bility of being activated can be adjusted adaptively according
to the feature complexity for a specific position.

To address existing problems and limitations of MR im-
ages SR, we incorporate the pyramid orthogonal attention
block (POAB) based on dual self-similarity to the deep net-
work in this paper. Based on the characteristics of MR im-
ages, we build a complete spatial statistical correlation and
channel self-attention mapping to guide the HR restoration.
The spatial attention performs full-scale SS matching from
local to global in the degraded MR image. Moreover, we de-
sign the NCAB for efficient high-level interactive attention
and adaptive region activation. The main contributions of our
pyramid orthogonal attention network (POAN) are as follows:

• We design the pyramid dual self-similarity block
(PDSB) containing the non-local point-similarity and
the multi-scale pyramid-similarity simultaneously. The
fused SS mechanism covers the global full-scale recep-
tive field and models the correlation between features
of different sizes in the entire input image.

• The channel reduction operation is removed to max-
imize the continuous cross-channel interaction. Fur-
thermore, we use covariance pooling instead of global
pooling for capturing high-order gradient differences of
gray value. An orthogonal attention structure is pro-
posed by combining the spatial attention and channel
attention with a multi-level residual structure.

• An extensive ablation study verifies the effectiveness
and efficiency of each component in the proposed
POAN. Compared with recently leading methods, our
novel method achieves state-of-the-art performance in
quantitative and qualitative experiments.

2. PROPOSED METHOD

2.1. Pyramid Dual Self-Similarity
Point-Similarity: As shown in Fig. 1(a), for an entire image,

we search for points similar to the current pixel to get the
point-similarity matrix. By traversing the correlation of pixels
at two different coordinates through specific transformation
functions, the feature response that includes non-local self-
similarity attention is obtained. Formally, given the image
feature map X , the point-similarity is defined as:

Vi, j = ∑
m,n

exp(Φ(Xi, j,Xm,n))

∑g,h exp
(
Φ
(
Xi, j,Xg,h

))Ψ(Xm,n) , (1)

where (i, j), (m,n), and (g,h) are pairs of coordinates of X .
We define {Ψ(Xm,n) = WΨXm,n} as the feature transforma-
tion function, and Φ(·, ·) is the correlation function for feature
maps to measure similarity, which is denoted as:

Φ(Xi, j,Xm,n) = eg(Xi, j)
T

f(Xm,n), (2)

where g(Xi, j) = WgXi, j and f (Xm,n) = Wf Xm,n are transfor-
mation functions that generate the new representation of Xi, j
and Xm,n. The output response Vi, j obtains point-similarity
information from feature maps by calculating all pixels.

Patch-Similarity: In addition to similar pixels, some sim-
ilar image patches also tend to be repeated at multiple lo-
cations on the current scale. The patch closest to the query
patch is found by matching the query patch with other image
patches. Compared with point-similarity, extracting patch-
similarity with an appropriate neighborhood size can effec-
tively reduce the amount of calculation and capture a wider
range of correlations. As shown in Fig. 1(b), we define the
image patch of k× k as the minimum search unit. Moreover,
similar matching pairs are searched in the global scope of the
entire image. The patch-similarity item can be adapted as:

Vki,k j = ∑
m,n

exp
(
Φ
(
Xki,k j,Xkm,kn

))
∑g,h exp

(
Φ
(
Xki,k j,Xkg,kh

))Ψ
(
Xkm,kn

)
, (3)

where Vki,k j is the patch-similarity matrix of each feature
patch of size k× k located at (ki,k j). We look for other sim-
ilar patches for each position within the entire feature map
at the current scale. And the patch-correlation information is
obtained directly through global weighted normalization.

Pyramid-Similarity: Since multi-scale recursion will not
lose features, the structural information will still be well pre-
served after scaling down. Therefore, by scaling the original
input image, the patch-similarity can be extended to multi-
ple scales. We built the image-space pyramid of the original
LR image to get the cross-scale patch-similarity. As shown in
Fig. 1(c), to make full use of the image prior, the single-scale
attention can be extended to the pyramid attention, which can
calculate the correlation between multiple scales. In such a
unit, the multi-level block matching correspondence is cap-
tured on the entire feature pyramid.
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Fig. 2. The architecture of the proposed POAN and the internal implementation details of different network components. PDSB
fuses dual self-similarity from the two branches of point-similarity and pyramid-similarity. NCAB captures high-order attention
in the direction of the channel. POAB is composed of POSB and NCAB through multi-level residual structure.

In particular, a series of scales are given as S =
{s0,s1,s2, ...,sn}, where n represents the number of pyramid
levels. By traversing each value in the set S, the regional fea-
ture descriptors with different pyramid levels of the input X
are obtained. Therefore, in every specific level, the pyramid-
similarity matrix VSi,S j can be expressed as:

Vsei,se j = ∑
m,n

exp(Φ(Xsei,se j,Xsem,sen))

∑g,h exp
(
Φ
(
Xsei,se j,Xseg,seh

))Ψ(Xsem,sen) ,

e = 0,1,2, . . . ,n,

VSi,S j =
[
Vs0i,s0 j,Vs1,s1, j,Vs2i,s2 j, . . . ,Vsni,sn j

]
,

(4)

where e represents different levels of the pyramid, and Vsei,se j
corresponds to the self-similarity matrix calculated on the
corresponding scale. The [· · ·] represent the concatenation
operation between channels. Compared with a single scale
self-similarity, the pyramid-similarity summarizes regional
descriptors of various sizes. When concatenating patch-
similarities of different scales together, the response contains
richer and more authentic information intuitively.

Pyramid Dual Self-Similarity: Pyramid-similarity in-
cludes the autocorrelation of multi-scale image patches. The
point-similarity matrix captures the long-range dependence of
each pixel in a non-local range. In this paper, as shown in
Fig. 1(d), we combine the similarities of the above two types
to construct a pyramid dual self-similarity block (PDSB). We
define the function of point SS as FVi, j and the function of
pyramid SS as FVSi,S j , then the fusion feature is expressed as:

xp1 = FVi, j (xt) ,

xp2 = FVSi,S j (xt) ,

xP = Fc′ ([xp1,xp2]) ,
(5)

where Fc′(·) means the convolution layer with 1× 1 kernel.
xp1 represents the output feature of the point-similarity oper-

ation, and xp2 represents the output feature of the pyramid-
similarity operation. We combine xp2 and xp2 through chan-
nel concatenation and convolution layer to obtain xP as the
fused pyramid dual self-similarity feature. The internal oper-
ations in the proposed PDSB are shown in Fig. 2. This block
is mainly implemented by basic convolution and deconvolu-
tion operations. It should be noted that the size of the input
feature xt and the output feature xP are the same.
2.2. Pyramid Orthogonal Attention
Non-Reduction Channel Attention: As shown in Fig. 2,
we use the non-reduction channel attention mechanism to
obtain distinguishing feature representation. The previous
method obtains the first-order statistical information through
the global pooling layer and channel reduction, which destroy
the serial correlation between channels. So we use the global
covariance pooling to extract the high-order statistical distri-
bution of the image. The number of remapping convolution
kernels is set to be equal to the input feature maps.

The subsequent operation is similar to the usual channel
attention mechanism. Particularly, we get the final attention
vector through the non-reduction squeeze-and-excitation op-
eration. We define the input of NCAB is xp′ ∈ Rh×w×c. The
process can be expressed as follows:

Σ = xp′ IxT
p′ = UΛUT,

Ŷ = Σα = UΛα UT,
z = FGCP(Ŷ ),
xs = Softmax(FSδ (FEz))⊗ xp′ ,

(6)

where Σ is the corresponding covariance matrix. We set I =
1

h×w

(
I− 1

h×w 1
)
, where I means identity matrix. FGCP is the

global covariance pooling function, which averages the power
of the eigenvalues to obtain the normalized vector z. The δ

stands for the ReLU function. FS and FE represent the squeeze
and excitation operations with the same number of channel
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filters. The final channel attention vector is obtained through
the remapping of the Softmax function, and then multiplied
by the input feature xp′ of NCAB to obtain the final high-
order attention feature output xs.

Pyramid Orthogonal Attention Block: PDSB outputs the
self-similarity attention feature in the spatial domain while
NCAB outputs the high-order non-reduction attention feature
in the channel domain. We concatenate and merge the outputs
in these two directions to obtain pyramid orthogonal atten-
tion feature based on dual self-similarity. As shown in Fig. 2,
the multi-level residual mechanism in POAB promotes infor-
mation flow and stabilizes the training process through skip
connections between layers. The internal implementation of
POAB can be expressed by the following formula:

xP = FPSDB (xt) ,
xp′ = FCONV (xP) ,
xs = FNCAB

(
xp′

)
,

x f = FCONV
(
xs + xp′

)
+ xt ,

(7)

where FPSDB and FNCAB represent the corresponding func-
tions of PDSB and NCAB respectively. FCONV is defined as
a convolutional layer with a 1× 1 convolution kernel, which
is used to adjust the number of channels of the output. x f is
the output after the orthogonal attention. We use the residual
structure in POAB to create an identity mapping that is easier
to learn by adding cross-layer elements directly.
2.3. Pyramid Orthogonal Attention Network
The architecture of the proposed POAN is shown in Fig. 2.
We use a ResNet [15] with multiple residual blocks (RB)
stacked as the backbone. The proposed POAB is directly em-
bedded in the network, which can explain the effectiveness of
our method more intuitively. For reducing calculations and re-
dundancy, we follow the enhanced deep residual network [16]
and remove some redundant layers. We use pixel-shuffle layer
based on sub-pixel convolution and multi-channel recombi-
nation to perform upsampling of different scales in image re-
construction. Besides, considering the disappearance of gra-
dients and shallow features in network training, we introduce
a global skip connection in the main branch.

2.4. Training Objective
Some excellent loss functions have appeared in the natural
images SR task recently. However, excessive smoothing and
generating adversarial learning will bring the risk of texture
and structure distortion to MR images. So we choose the L1
loss as the optimization goal. Given a set including N-paired
LR and HR training images {ILR

i , IHR
i }N

i . We define the cor-
responding function between the LR and SR image as FPOAN
and minimize the loss between the HR and SR image:

L(θ) =
1
N

N

∑
i=1

∥∥IHR
i −FPOAN

(
ILR
i ;θ

)∥∥
1 , (8)

where θ denotes the parameters of our model, IHR
i is the

ground truth corresponding to ILR
i .

Fig. 3. The visual comparison on PD (top) , T1 (middle), and
T2 (bottom) dataset with scaling factor SR×4.

3. EXPERIMENTS

3.1. Datasets and Evaluation Metrics
We use the IXI dataset1 for training. It comprises three types
of MR images (PD, T1, and T2), and the numbers are 578,
581, and 578, respectively. Each image is a 3D volume with
a size of 240×240×96 (height×width×chnnel) and bicubic
downsample with 3 scaling factors (×2, ×3 and ×4). The
peak signal-to-noise ratio (PSNR) and structural similarity in-
dex metric (SSIM) [17] are used for quantitative evaluation.
3.2. Implementation Details
There are 40 RBs in the POAN, and a POAB is inserted after
the 20th block. In PDSB, we set S = {0.8,0.6,0.4} to con-
struct a 3-level SS feature pyramid. The 3 × 3 patches and 1
× 1 points are used for the dual SS extraction. The convolu-
tion and deconvolution filters in PDSB have an equal size. 96
LR 64×64 patches are integrated as a training batch, and the
number of all feature maps is set to 64. Our model is trained
by ADAM optimizer with {β1 = 0.9,β2 = 0.999, epsilon =
10−8}. The learning rate is initialized as 1× 10−4 and then
reduce to half after every 200 epochs. We implement all mod-
els with the Pytorch framework and train them on NVIDIA
GeForce GTX 1080 Ti GPU for 1000 epochs.
3.3. Comparisons with Other Methods
Some advanced SR methods on MR images are compared
quantitatively and qualitatively, including NLM [18], SR-
CNN [19], VDSR [20], RDN [21], EDSR [16], and CSN [22].

1http://brain-development.org/ixi-dataset/
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Table 1. Quantitative comparison between different SR methods. The maximal PSNR (dB) and SSIM values of each compari-
son cell are marked in red, and the second ones are marked in blue (PSNR / SSIM).

Data Scale Bicubic NLM SRCNN VDSR RDN EDSR CSN POAN (Ours) POAN+ (Ours)

PD
×2 35.04/0.9664 37.26/0.9773 38.96/0.9861 39.97/0.9861 40.31/0.9870 39.87/0.9857 41.28/0.9895 41.59/0.9901 41.92/0.9906
×3 31.20/0.9230 32.81/0.9436 33.60/0.9516 34.66/0.9599 35.08/0.9628 34.39/0.9678 35.87/0.9693 36.46/0.9731 36.65/0.9739
×4 29.13/0.8799 30.27/0.9044 31.10/0.9181 32.09/0.9311 32.73/0.9387 31.80/0.9284 33.40/0.9486 33.94/0.9546 34.18/0.9563

T1
×2 33.80/0.9525 35.80/0.9685 37.12/0.9761 37.67/0.9783 37.95/0.9795 37.56/0.9774 38.27/0.9810 38.79/0.9827 38.86/0.9829
×3 30.15/0.8900 31.74/0.9216 32.17/0.9276 32.91/0.9378 33.31/0.9430 32.76/0.9347 33.53/0.9464 34.22/0.9530 34.34/0.9538
×4 28.28/0.8312 29.31/0.8655 29.90/0.8796 30.57/0.8932 31.05/0.9042 30.46/0.8902 31.23/0.9093 32.06/0.9231 32.21/0.9250

T2
×2 33.44/0.9589 35.58/0.9722 37.32/0.9796 38.65/0.9836 38.75/0.9838 38.28/0.9824 39.71/0.9863 40.43/0.9877 40.56/0.9879
×3 29.80/0.9093 31.28/0.9330 32.20/0.9440 33.47/0.9559 33.91/0.9591 33.15/0.9528 34.64/0.9647 35.25/0.9686 35.43/0.9694
×4 27.86/0.8611 28.85/0.8875 29.69/0.9052 30.79/0.9240 31.45/0.9324 30.52/0.9198 32.05/0.9413 32.60/0.9477 32.83/0.9495

Table 2. Performance comparison of different SS combina-
tion on PD (×2) in 400 epochs.

Method Point SS Patch SS Pyramid SS PSNR (dB)
A 36.45
B X 37.72
C X 37.67
D X 38.31
E X X 38.94
F X X 39.35
G X X 40.21
H (Ours) X X X 41.53

Table 3. Performance comparison of different attention do-
main combinations on T1 (4×) in 400 epochs.

Method Channel Domain Spatial Domain PSNR (dB)
A 26.71
B X 28.94
C X 30.37
D (Ours) X X 31.62

Quantitative Results: As shown in Tab. 1, all the quanti-
tative results for ×2, ×3, and ×4 on PD, T1, and T2 datasets
are reported. We use geometric self-ensemble like the method
of EDSR [16], which is defined as POAN+. Compared with
other advanced methods, it can be seen that the proposed
POAN shows superiority and outperforms other state-of-the-
art methods by a large margin on all scaling factors.

Visual Comparisons: As shown in Fig. 3, we compare SR
results on the PD (top), T1 (middle), and T2 (bottom) images
with scale×4 visually. It can seem that most of the compared
methods cannot reconstruct the detailed textures accurately
and even suffer structural distortions. For example, in the PD
image, most of the methods listed cannot recover the sharp
triangular shape and bright white spots well, and the result
of CSN appears wrong arc structure distortion. Our POAN
achieves clearer and more reliable results with more refined
details. A similar comparison can also be seen from T2 im-
ages. Our method can still extract more sophisticated features
from severely degraded LR images with limited information
and produce the SR MR image closest to the ground truth.
3.4. Ablation Study
Self-Similarity Combinations: We compared the performance
of networks focusing on different types of SS priors. The
specific quantitative results are listed in Tab. 2. We take the
structure that does not extract any similarity features as the
basic baseline. According to the performance of the first
three methods in Tab. 2, we can observe that pyramid ss in
method D achieves the highest PSNR gain (1.9 dB) compared
with method B and C. This observation proves that cross-

Fig. 4. The visualization of CAMs before attention layer
(top), after the CAB (middle), and after the NCAB (bottom).
scale pyramid attention captures more feature correlations.
Then we combined different SS structures in pairs. The re-
sults show that method E adding pixel-wise features attention
based on single scale patch SS can improve the highest PSNR
from 37.67 dB to 38.94 dB. It indicates the effectiveness of
the pixel-wise non-local attention. If we replace the simple
patch SS with pyramid SS in method G, the SR performance
will be improved slightly (40.21 dB). The last row of Tab. 2
indicates that the proposed PDSB achieves the highest PSNR
and the closest result to the ground truth.

Pyramid Orthogonal Attention: We analyze the impact of
different attention domain combinations on network perfor-
mance. As shown in Tab. 3, Method A is non-attention. We
insert channel domain attention NCAB or the spatial domain
attention PSDB into the block, respectively, defined as meth-
ods B and C. The results in the first three rows prove each
attention domain’s effectiveness, as each of them brings im-
provement over the backbone. The network with POAB is
defined as method D, which is equipped with attention from
two orthogonal directions. We found that the network gets the
best performance and improves the highest PSNR from 30.37
dB to 31.62 dB, achieving significant improvements.

Attention Visualization Comparison: We visualize the
class activation map (CAM) before and after the first-order
channel attention block (CAB) or the NCAB. The CAMs dis-
plays which areas are critical by highlighting in different col-
ors, where red means the most important. Meanwhile, orange,
green, and blue represent decreasing importance. As shown in
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Fig. 4, the CAMs without any attention (top) and the second
and third rows represent the feature visualization after CAB
and NCAB remapping, respectively. The activation regions in
non-attention CAMs are evenly distributed and pay too much
attention to the background wrongly. This phenomenon is
alleviated after adding the CAB (middle). Although the net-
work with CAB began to focus on areas with richer textures,
a large number of useful features were still be suppressed.
The CAMs from NCAB (bottom) show excellent superior-
ity. Larger high-frequency regions are activated, and more
suppression is applied to the ineffective background regions.
Compared with the first-order information using channel re-
duction, the experiment results prove that the non-reduction
channel recalibration and high-order covariance statistics cap-
ture the continuous correlation between channels.

4. CONCLUSION
Based on the visual characteristics of MR images, we design
a pyramid orthogonal attention network (POAN) to guide im-
age SR in this paper. It is the first attempt to combine auto-
correlation prior of the MR image itself in traditional meth-
ods and the deep CNNs. Using pyramid orthogonal attention
containing both spatial and channel domains, we explore the
complete self-similarity on full scales in LR MR images. The
non-reduction attention mechanism with high-order statistics
captures distinguishing features adaptively. Using points and
pyramid-scale patches highly similar to the current region, the
micro-structures and sharp textures in MR images can be re-
stored more accurately. The proposed POAN improves the
performance of the MR images SR task and alleviates the
deep network’s excessive dependence on external datasets ef-
ficiently. Self-similar visual characteristics also exist in other
types of medical images (e.g., X-ray and CT), so our method
can be further explored in other image restoration tasks.
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