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a b s t r a c t

Learning-based methods have been becoming the mainstream of single image super resolution (SR)
technologies. This kind of methods makes it effective to generate a high resolution (HR) image from a
single low resolution (LR) image. There exists, however, two main problems with these methods: the
quality of training data and the computational demand. We propose a novel framework for single image
SR tasks in this paper, which consists of blur kernel estimation (BKE) and dictionary learning. BKE is
utilized for improving the quality of training samples and realized by minimizing the dissimilarity be-
tween cross-scale patches iteratively. Couple dictionaries are trained by improved training samples be-
fore sparse recovery. More important is that a selective patch processing (SPP) strategy is adopted in BKE
and sparse recovery, which brings more accurate BKE results and immensely reduces time consumption
of the entire process. The experiments show that the proposed method produces more precise BKE
estimation and better SR recovery than several typical SR algorithms at a higher efficiency.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Image super-resolution (SR) is a cluster of technologies re-
covering a super-resolved image from a single image or a sequence
of images of the same scene, which is a basic operation of many
subsequent image manipulation (such as feature extraction [1] and
image fusion [2]). In many practical applications, however, it is not
easy to obtain an adequate number of LR observations. Therefore,
single image super-resolution has attracted great attentions in
recent years.

Machine learning based methods are promising technologies
for SR problem, and it has become the most popular topic in single
image SR field. Freeman et al. [3] proposed example-based learn-
ing method firstly. The algorithm predicted HR patches from LR
patches by solving Markov Random Field (MRF) model via belief-
propagation algorithm. Then, Sun et al. [4] enhanced dis-
continuous features such as edges and corners etc. by primal
sketch priors, which extended example-based method further. To
improve execution efficiency, Chang et al. [5] proposed nearest
neighbor embedding (NNE) method motivated by the philosophy
of locally linear embedding (LLE) [6]. They assumed LR patches
and HR patches have similar space structure. The coefficients of LR
patch can be solved through least square problem, which are then
applied to HR patches directly. NNE utilizes a few of training data
to represent a test sample and reduces the computation time
dramatically. However, fixed number of NNs may cause over-fit-
ting and/or under-fitting phenomenon [7] which is similar to other
typical learning issues (e.g. Boosting [8]). Aiming at this problem,
Yang et al. [9] proposed an effective method based on sparse re-
presentation and compress sense theory, which selects the num-
ber of NNs adaptively and solved the fitting problem effectively.

There exist two other issues about the original sparse re-
presentation methods: the compatibility between training samples
and testing samples, and the mapping relation between LR feature
space and HR feature space. Firstly, patches sampled from the same
image generally have higher compatibility because of the same illu-
mination and device parameters etc. Glasner et al. [10] exploited
image patch non-local self-similarity (NLSS) within and cross image
scale for single image SR tasks, which makes an effective solution for
the compatibility problem between training and testing samples.
Secondly, patch-based methods usually need to extract LR/HR fea-
tures from training samples. The relation between these training
features were learned via certain methods and then reflected in
testing samples. But LR patch space and HR patch space, actually, are
tied by some mapping function, which could be unknown, compli-
cated and not necessarily linear [11]. The direct mapping, e.g. [9,26],
may not reflect this unknown relation correctly. Yang et al. [12]
proposed another joint dictionary training approach to learn the
duality relation between LR/HR patch spaces. The method essentially
concatenated the two patch/feature spaces and converted the
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problem to the standard sparse representation in a single feature
space. Further, they explicitly learned the sparse coding problem
across different feature spaces, which is so-called coupled dictionary
learning (CDL) [11]. He et al. [13] proposed another appealing beta
process joint dictionary learning (BPJDL) for CDL based on a Bayesian
method using a beta process prior. The above-mentioned approaches
mainly focus on learning unknown relation between LR/HR feature
spaces more accurately. When concentrating on single image SR task,
these methods still need to take the characteristic of training samples
(e.g. blurring and noise etc.) into account for better execution and
performance.

The most of current SR technologies typically assume that the
blur kernel is known under the condition of single input image
(non-blind). For example, low-pass filters (LPF) such as a Gaussian
or a bicubic kernel is usually used to replace the unknown blur
kernel or the point spread function (PSF) of the imaging device.
But Michaeli et al. [14] pointed out that the performance of SR
methods significantly deteriorates when the assumed blur kernel
deviates from the true one. Obviously, imprecise blur kernel will
lead to the low-quality training data and further affect SR results.
Another nonparametric blind super resolution technology was
proposed by Wen Ze Shao and Michael Elad [25] based on the
philosophy of optimizing the estimated blur kernel and an inter-
mediate super-resolved image jointly, which is a bi-L0-L2-norm
regularization optimization problem. But it is seriously time-con-
suming as solving L0/L1 norm constrained optimization problems
during SR recovery.

Our primary observation is two-fold: 1). BKE is a process of
solving a convolution kernel. But the convolutional influence is
small in smooth area. See Fig. 1(a); 2). Natural images generally
consist of continuity and discontinuity patterns. The existing
methods, which aimed to resolve the discontinuous patterns of
natural images, cannot outperform traditional interpolation tech-
nologies within smooth area. See Fig. 1(b). In this paper, we pre-
sent a novel single image SR method according to our previous
observation. The proposed approach estimated the true blur ker-
nel based on minimizing the dissimilarity between cross-scale
patches firstly. Then, LR/HR coupled dictionaries were trained
through input image downsampled by estimated blur kernel,
which improved the quality of training samples. The more im-
portant is that a SPP strategy measured by average gradient am-
plitude [15] is employed in both BKE and SR recovery. As shown by
our experiments, SPP not only reduced the time consumption
drastically, but also improved the quality of BKE and SR recovery.

Our paper is structured as follows. In Section 2 we focus on
Fig. 1. Observations on selective patch processing. (a) The residual image of “Tower” g
volution with a motion kernel. (b) The different SR results performed by bicubic interpo
recovery beats bicubic interpolation. Blue color represents patches where bicubic interpo
(For interpretation of the references to color in this figure legend, the reader is referred
previous works that are closely related to the proposed method. In
Section 3 we introduce our improved blur kernel estimation
technique and SR recovery method. The experiments are con-
ducted in Section 4 with some discussions. Section 5 concludes the
paper.
2. Related work

2.1. Internal statistics of a single natural image

One of the most useful internal statistical attributes of natural
image patches is the patch recurrence within and cross scale,
which is exploited by Glasner et al. in 2009 [10]. Image patch re-
currence is also known as image patch redundancy or non-local
self-similarity (NLSS). This means a small image patch tends to
recur many times no matter within or cross different scales. NLSS
in natural images can be exploited as useful prior knowledge for
various image restoration tasks, such as super resolution [10,15–
18], image denoising [19], deblurring [20] and inpainting [21] etc.
However, it is not necessary to consider the redundancy of all
patches most of the time according to our previous observations.
Zontak et al. [15] further quantified the property by relating it to
the spatial distance from the patch and the mean gradient mag-
nitude of the patch. The three main conclusions can be perceived
according to [15]: (1) smooth patches recur very frequently,
whereas highly structured patches recur much less frequently;
(2) a small patch tends to recur densely in its vicinity and the
frequency of recurrence decays rapidly as the distance from the
patch increases; (3) patches of different gradient content need to
search for nearest neighbors at different distances. These conclu-
sions are very useful when we employ discriminatory processing
strategies for different patches.

2.2. Cross-scale blur kernel estimation

Michaeli et al. [14] utilized the NLSS property to estimate the
optimal blur kernel and cross-scale patch redundancy was max-
imized iteratively. More specifically, the initial kernel was assumed
to be a delta function and used to down sample the input image.
For each small patch in input image, they found a few NNs in
down-sampled version of input image. Each NN for the small
patch corresponds to a large patch in input image, and all NNs for
small query patch constitute a set of LR/HR patch pairs. All the
patch pairs construct a set of linear equations which can be solved
enerated by the original image subtracting blurred image which obtained by con-
lation and sparse recovery (from [8]). Red color denotes the patches where sparse
lation is superior. Gray color indicates that the two perform on par with each other.
to the web version of this article.)



Fig. 2. Descriptions of cross-scale patch redundancy and blurring effect on different patches in natural images. (a) Cross-scale patch redundancy (see context), where k is
blurring kernel. (b) Structured patch and smooth patch in clean “Monarch”. (c) Structured patch and smooth patch in blurred “Monarch”. Here, (c) is the result of convolving
(b) with a 11×11 Gaussian kernel with σ = 1.5. Obviously, structured patch (upper left) is very different after being blurred with Gaussian kernel, whereas smooth patch
(lower right) keeps almost unchanged visually.
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by using weighted least-squares to obtain an updated kernel.
These steps are repeated until the root mean squared error (RMSE)
between patches in the input image and their NNs in down-
sampled version does not increase further. Fig. 2(a) shows the
cross-scale blur kernel estimation process.

The method of [14] is actually to solve a convolution kernel that
makes cross-scale patch as redundant as possible. It depends on
the observation that HR images possess more patch recurrence
than LR images to solve optimal blur kernel by maximizing cross-
scale patch recurrence. The process was interpreted as a maximum
a posteriori (MAP) estimation process in Ref. [14]. However, as we
can see in Fig. 2(b) and (c), the effect of blurring in smooth area is
unconspicuous. Fig. 1(a) also shows the same issue. This phe-
nomenon can be explained easily according to the definition of
convolution. Therefore, smooth patches almost contribute nothing
in blur kernel estimation with respect to structured patches.

2.3. Coupled dictionary learning

The current research on digital image and signal shows that
sparse representation can recover latent signal more accurately
relative to traditional approaches. This is mainly due to its capacity
of adaptively computing the number of reconstructing samples
and the coefficient of linear combination. In SR tasks, however, it
generally involves two feature spaces: LR feature spaceFL and HR
feature space FH . There exists a certain unknown relation M:

→F FL H between the two feature spaces. Generally, M is unknown
and non-linear. So the traditional practice of applying the sparse
representation of LR feature space directly to HR feature space is
not applicable.

The goal for coupled dictionary learning is to find a coupled
dictionary pair DL and DH for feature space FL and FH respectively,
so that we can use the sparse representation of any testing signal

∈y FL in terms of DL to recover the corresponding latent HR signal
∈x FH in terms of DH directly. Under the condition of L1 norm, it

can be expressed as following equations for any coupled signal
pair formally:

α αλπ = ‖ − ‖ + ‖ ‖ ∀ = …
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where NL and NH are the numbers of the atoms in DL and DH

respectively, and generally they are equal to each other.
{ }π π= | = …i N1, 2, ,i H is the set of sparse representation on cou-

pled feature spaces. The sparse representation coefficient vector αi

is utilized for the ith signal pair, and λ is the regularization para-
meter as tradeoff between the reconstruction error and the L1
norm regularization terms.
To balance the reconstruction error on observation feature

space FL and latent feature space FH , Yang et al. [11] proposed an
effective solution called coupled dictionary learning (CDL). CDL
models the dictionary learning problem as a bilevel optimization
problem to minimize the squared loss term on both feature space,
namely, one of the optimization problems on the observation
feature space and the other on the latent feature space. To balance
the reconstruction error on observation feature space and latent
feature space, CDL algorithm changes the objective function of [8]:
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where γ is the parameter balancing the reconstruction error on
both feature spaces. Eq. (4) is solved by alternatively optimizing
over DL and DH while keeping the other fixed. Stochastic gradient
descent using implicit differentiation is employed to solve DL

during the iterative process.
3. The proposed approach

3.1. Selective patch processing strategy

Discriminating patches during sparse recovery was utilized for
reducing time consumption by [11]. We adopting the same phi-
losophy in our method, but there are two key differences. Firstly,
Yang et.al employed SPP only for improving SR recovery efficiency,
whereas we also use it to improve the quality of BKE. Our sub-
sequent experiments will show the validity of properly abandon-
ing useless smooth patches. Secondly, Yang et al. simply took the
statistical variance of a patch as the criterion of SPP. However, the
average gradient amplitude |grad| of a patch is more expressive
than statistical variance according to the internal statistics of a
single natural image [15]. So we utilized |grad| to differentiate
patches.

If the size of patches is ×w h, and Pij denotes a certain point
located in ( )i j, , Pij

x and Pij
y represent the derivatives of x and y

direction respectively. Then |grad| can be simply formulated as:
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+
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We set a threshold τb for each query patch in BKE stage. A patch
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is used to estimate blur kernel only when the |grad| of it is bigger
than τb. Otherwise, the patches are simply dropped. Similarly, we
set another threshold τr for each testing patch in SR recovery. If the
|grad| of a testing patch is smaller than τr , then we use traditional
interpolation to scale it. Otherwise, we utilize CDL-based sparse
representation to process it.

3.2. Blind kernel estimation

We use Y to represent input LR image, and X to be latent HR
image. As shown in Fig. 2(a), for each small patch pi in the input
image Y, we can find a few NNs qij

s for it in down-sampled version
Y s. The “parent” patches qij right above qij

s are viewed as the can-
didate parent patches of pi. The patch pairs { }p q,i ij are used to
construct a set of linear equations, which is solved by weighted
least square rule. According to [14], the weight of each “parent”
patch is calculated by the following formula so that good NNs
contribute more than their poor counterparts:

( )
( )

σ

σ
=

−‖ − ‖
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p q

p q
w
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exp / 6
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where Mi is the number of NNs of each small patch pi in Y, and σ is
the standard deviation of noise added on pi. s is the scale factor.
Note that we apply the same symbol to express column vector
corresponding to the patch for convenient expression. Maximizing
the cross-scale NLSS of Y with respect to the scale factor s is in-
tuitively equivalent to minimizing the dissimilarity between cross-
scale patches. Therefore, we solve L2 norm optimization problem
for BKE:
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where N is the number of small query patches in Y. Matrix Rij

corresponds to the operation of convolving with qij and down
sampling by s. C is a matrix used as the penalty of non-smooth
kernel. The second term of Eq. (7) is kernel prior and λ is the
balance parameter as the tradeoff between the error term and
kernel prior. By setting the gradient of the objective function in Eq.
(7) to zero, we can get the update formula of k:
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This is similar to the result of [14], which can be interpreted as
maximum a posteriori (MAP) estimation on k. However, our blur
kernel estimation has two essential differentials with respect to
[14]. Firstly, our method is driven by the idea of minimizing the
dissimilarity between cross-scale patches while [14] tends to
maximize the similarity directly. This may not be easy to under-
stand. But, the latter leads Michaeli and Irani [14] to form their
kernel update formula from physical analysis and interpretation of
“optimal kernel”. But the former leads us to obtain kernel update
formula from quantitating cross-scale patch dissimilarity and di-
rectly minimizing it according to ridge regression. Secondly, the
number of NNs of each small patch is not fixed which provides
more flexibility during solving least square problem. Therefore, the
terminal criterion cannot be the totality of NNs. We utilize the
average patch dissimilarity (APD) as terminal condition of itera-
tion:
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In order to find NNs of required patches, we need to perform
broader range of search in entire image here. According to the
three conclusions of [15] (See Section 2.1), finding NNs for struc-
tured patches requires larger search region. We search the whole
image for each patch because SPP has dropped many invalid pat-
ches and searching in the whole image will not spend too much
time.

3.3. Sparse recovery with CDL

We use the estimated kernel to down-sample the input image
and extract feature from patches. Assuming yp is a LR patch con-
taining original image data and y is LR patch feature extracting
from yp (usually y is a vector concatenated with 1st and 2nd de-
rivatives along with x and y direction). We need to solve the fol-
lowing L1 norm constrained optimization problem:

α αφ‖ − ‖ + ‖ ‖
( )α

y Darg min
10L 2

2
1

where φ allows alleviating the ill-posed problems and stabilizes
the solution. y corresponds to a testing LR patch extracted from
interpolation version of input image. DL is the LR dictionary
trained by CDL. The solution of Eq. (10) is found by solving a
L1-regularized Lasso problem. This can be done by Sparse Learning
with Efficient Projections (SLEP) [24]. After we get the coefficient
vector α of LR patch feature vector y, HR patch feature then can be
computed directly by:

α
α

=
‖ ‖ ( )

x
D
D 11

H

H 2

DH is the HR dictionary trained by CDL here. Then, Recovery HR
image patch xp can be obtained by:

= ( × ) × + ( )x xc u v 12p

where ( )= yu mean p and = ‖ − ‖yv up 2. c is a constant and used for
properly scaling the feature vector. Generally, solving Eq. (10) is
severely time-demanding, and there are two directions to accel-
erate the SR recovery: reducing the number of patches to process
and finding a fast solver for L1 norm minimization problem Eq.
(10). SPP is adopted in our method as [11]. However, as mentioned
above, the criterion of selecting patches is the gradient magnitude
|grad| instead of the variance of a patch according to [15].
4. Experimental results

In this section, we will give some experimental results about
blur kernel estimation and SR recovery. All the experiments are
performed on a Philips PC with 8.0 GB memory and running a
single core of Intel Xeon 2.53 GHz CPU. We mainly compare our
blur kernel estimation method with [14] in terms of kernel accu-
racy and efficiency, while SR performance is compared with sev-
eral state-of-the-art SR algorithms.

4.1. Comparisons for estimating blur kernel

4.1.1. Preparation and parameters
We only performed detailed comparison between our BKE

method and [14] because they have common background in the-
ory basis and similar implementation. 2� and 3� SRs are per-
formed in our experiments. When scale factor s ¼ 2, we set the
size of small query patches pi and candidate patches qij

s of NNs to
5�5, while the size of “parent” patches qij are set to 9�9. Both pi

and qij
s do not change size, but “parent” patches are set to be

13�13 patches when perform 3� SR. Noise standard deviation σ is
assumed to be 5. Parameter λ in Eq. (7) is set to 0.25, and matrix C



Fig. 3. Blurring on original images and selective patch process in BKE. (a) The monochrome “Monarch” image blurred by a 9�9 Gaussian kernel with a standard deviation
σ = 1.5. (b) Structured content of (a) selected to estimate blur kernel. (c) The monochrome “Flower” image blurred by a 9�9 “motion” kernel with len ¼ 5 and theta ¼ 45.
(d) Structured content of (c) selected to estimate blur kernel.
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is chosen to be the derivative matrix corresponding to x and y
directions of “parent” patches as [14]. The threshold of |grad| τb for
selecting query patches is set to 10. Fig. 3 shows the structured
parts used to perform BKE, and the blur kernels of “Monarch” and
“Flower”. It can be cleanly seen that input data are seriously
blurred and inaccurate, and traditional sparse representation
methods not executing BKE are inoperative in this case actually.
Besides, there is only a few part of original image that can be used
for BKE due to selective patch processing.

4.1.2. Accuracy comparison
Estimated BKE results from “Monarch” and “Flower” are pre-

sented in Fig. 4 to illustrate the accuracy of the recovered kernel
qualitatively. As shown, both algorithms can estimate the rough
shape of the ground-truth kernel, but our approach gives more
accurate results on both kernel size and shape. This is true espe-
cially when the ground-truth one is a motion kernel. On the one
hand, not taking fixed number of NNs for each query patch in LR
images makes BKE more flexible, and reduces the adverse impact
caused by over-fitting or/and under-fitting. On the other hand,
Selective patch processing strategy measured by the average gra-
dient amplitude |grad| abandoned useless smooth patches and
kept more structured non-smooth patches, which relieved the
computational demanding for CPUs significantly. It can be easily
concluded that our method provided more accurate BKE results
according to the size and shape of estimated kernels.

4.1.3. Efficiency comparison
We collect the average MSE of each NN during iterations as

shown in Fig. 5(a). Though we selectively use structured patches to
estimate blur kernels, the average MSE of our algorithm still
smaller than [14]. This is mainly attributed to the unfixed number
of NNs to construct the set of linear equations. As we can see in
Fig. 4. The accuracy comparisons for BKE. (a) Gaussian kernel estimation with “Monarch
top row and the bottom row are 13×13 and 9×9 respectively. (a) “gaussian” kernels (b)
Fig. 5(a), our BKE method converges through about 8 iterations,
whereas the algorithm of [14] converges through almost 15
iterations. In fact, because we dropped a part of query patches at
beginning, the time spent by each iteration is much less than [14].
After the convergence of algorithms, the average MSE between
cross-scale patches of our algorithm is also smaller than Michaeli's
algorithm. Therefore, the selective patch process and adaptive
number of NNs produce more accurate BKE results, but need less
iteration times.

We apply the same measures with [14] to compare the effect of
estimated kernels on SR algorithms: The Error Ratio to Ground
Truth (ERGT), which measures the ratio between the SR re-
construction error with estimated kernels and the SR reconstruc-
tion error with the ground-truth one

=|| − ||
|| − || ( )
X X
X X

ERGT
13

k

k

2

2

where Xk and Xk are the recovered HR images with estimated
kernel k and ground-truth kernel k respectively. Apparently, if
ERGT is close to 1, it indicates that the estimated kernel is nearly as
good as the ground-truth kernel. Fig. 5(b) shows the results of
applying both estimated kernels in the SR algorithm proposed by
Yang et al. [9]. We super-resolved all the five testing images with
scale factor s ¼2, and collect the average ERGT at each iteration. In
the whole iterative process, the ERGT of our algorithm is always
closer to 1 than [14].

Fig. 6 shows the SR results of applying estimated kernels in the
original sparse representation algorithm presented in Ref. [9]. We
extract the coccinella septempunctata in the “flower” image. The
ground-truth is a 13�13 (i.e. 3� SR) “motion” kernel with len ¼
5 and theta ¼ 45. The same SR algorithmwith our estimated kernels
gives more distinct edges and textures versus that estimated by the
” image. (b) Motion kernel estimation with “Flower” image. The size of kernels in the
“motion” kernels.



Fig. 5. BKE efficiency Comparisons. SR algorithm is original sparse representation proposed by Yang et al. [9]. (a) The attenuation trend of average MSE as iterations. (b) The
change of ERGT as presented in Ref. [14]. (a) Average MSE Comparison (b) ERGT comparison.

Fig. 6. SR comparisons with different kernels. All of these SR images were recovered by original sparse representation proposed by Yang et al. [6]. (a) Reference image.
(b) Bicubic interpolation. (c) Michaeli et al. [14]. (d), (e), and (f) are our results when the threshold of |grad| is 10, 20, and 30 respectively.

Table 1
Thresholding effects on recovery accuracy and time consumption (τb¼ 10).

τr (�2) 0 10 20 30

Lena SSIM 0.9538 0.9527 0.9514 0.9507
Time (s) 53.5624 44.2485 27.7148 15.6733

Monarch SSIM 0.9428 0.9415 0.9405 0.9386
Time (s) 63.7813 41.1298 22.8712 11.8635

Table 2
SR comparisons with several typical blind methods and proposed algorithm
(τb¼15).

Image Sets Scale Michaeli et al.
[14]

Shao et al. [25] Ours

PSNR
(dB)

SSIM PSNR (dB) SSIM PSNR (dB) SSIM

Set2 �2 28.17 0.9014 30.72 0.9377 31.87 0.9507
�3 26.35 0.8675 28.95 0.8995 30.35 0.9296

Set5 �2 28.66 0.9167 30.34 0.9363 32.01 0.9469
�3 27.19 0.8741 28.29 0.9045 30.47 0.9324

Set14 �2 28.31 0.9009 30.49 0.9331 31.92 0.9478
�3 26.87 0.8693 29.03 0.8986 29.98 0.9289
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method of [14]. Furthermore, the change of visual effect is not ob-
vious as the threshold of average gradient magnitude increases, but
properly increasing the threshold can reduce the number of query
patches and hence shorten the time consumption of BKE effectively.
4.2. Comparisons for SR recovery

4.2.1. Objective evaluation
To simulate many actual application scenarios, all input images

for each algorithm are obtained by blurring clean images with
default blur kernels. In other words, input image data is set to be of
low quality via some blur kernels in our experiments. This is also
very different from current general experimental methodologies
employed by most of non-blind algorithms and the most im-
portant equivalent condition set on our experiments.

Instead of simply using the variance of a small patch to be the
criterion of patch selection, we adopted average gradient magni-
tude |grad| presented in Ref. [15] to filter smooth patches. Table 1
presents the effects of thresholding on SR recovery accuracy and
processing time with sparse representation solved by L1 norm
minimization problem. With the threshold on |grad| increasing, the
consumed time decreases rapidly whereas SSIM reduces slightly.
Note that the threshold on |grad| cannot increases unlimitedly for
that may reduce the number of valid patches and lead imprecise
blur kernel estimation. Apparently, our method provides the least
amount of time consumption due to SPP in terms of the methods
of [9,22,23], which calculate L0/L1 form normalized optimization
problem for the unnecessary smooth patches. Table 2 presents the
average PSNR and SSIM comparisons between the proposed
method and two typical blind SR algorithms proposed recently.
Image data include Set2, Set5 and Set14, which are collected form
[26]. Note the reference is the blurred images, but not the original
clean image when comparison. Our approach brings big im-
provement over PSNR and SSIM compared with other blind SR
methods. This is mainly due to the more accurate results of our
BKE providing the training samples of higher quality, which can be
seen from the following visual comparison results.

4.2.2. Subjective evaluation
Fig. 7 shows some visual comparisons of above-mentioned
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blind SR reconstruction approaches. For testing purpose, all input
images are convolved with default kernels and then downsampled
to corresponding scales. All results are generated through the
same recovery method after BKE. We can see from Fig. 7 that our
BKE method provides the most accurate estimated kernel (from
the perspective of kernel size and shape) and more realistic SR
output. Figs. 8 and 9 two non-blind SR algorithms: Adjusted An-
chored Neighborhood Regression (Aþ ANR) [26] and Jointly Op-
timized Regressors (JOR) [27], which are the most state-of-the-art
algorithms proposed recently. However, they completely failed in
achieving acceptable SR performance when input images are se-
verely degraded and the used blur kernel deviates from the true
one. Note Fig. 8(b) seems to be clear as Fig. 8(f), but the impact of
“motion” kernel is obvious. The estimated kernel.

of our BKE method in Fig. 9 has some “steep” components. This
is mainly because there is a lot of “steep” flat area in the blurred
“butterfly” image, and they were dropped as smooth query patches
during SPP.
5. Conclusion

We proposed a novel single image blind SR framework aiming
at improving the SR effect and reducing time consumption in this
paper. The algorithm mainly contains blur kernel estimation and
SR recovery stages. The former is realized by minimizing dissim-
ilarity of cross-scale image patches, which is slightly similar to the
MAP estimation approach proposed by Michaeli et al. [14]. The
latter relies on a coupled dictionary learning process [11] and
simply solves a L1 form constrained optimization problem on the
patches reserved by SPP. The SPP utilized in these two stages de-
pends on the criterion of average gradient amplitude |grad| instead
of statistical variance. All above-mentioned processes make our SR
algorithm could achieve the better SR results than several typical
blind or non-blind SR approaches. However, solving L1 norm op-
timization problem is still extraordinarily time-consuming. Actu-
ally, ANR and JOR are much faster than proposed method. Our
further research work will be to find out other better ways of
improving the SR accuracy and reducing the time consumption
further.
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