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Abstract. Learning-based methods have been becoming the mainstream of sin-
gle image super resolution (SR) technologies. It is effective to generate a high-
resolution image from a single low resolution input. However, the quality of 
training data and the computational demand are two main problems. We pro-
pose a novel process framework for single image SR tasks aiming at these two 
problems, which consists of blur kernel estimation (BKE) and dictionary learn-
ing. BKE is utilized for improving the quality of training samples and compati-
bility between training samples and test samples, which is realized by minimiz-
ing the dissimilarity between cross-scale patches iteratively (intuitively be 
equivalent to maximizing the similarity of cross-scale patches). A selective 
patch processing (SPP) strategy is adopted in BKE and sparse recovery to re-
duce the number of patches needed to be processed. The fact that nature images 
usually contain continuity and discontinuity simultaneously ensures the feasibil-
ity of SPP. The experimental results show that our method produces more pre-
cise estimation for blurring kernel and better SR effect than several state-of-the-
art SR algorithms on equal conditions, but needs much less computation time. 

Keywords: Super resolution · Non-Local Self-Similarity (NLSS) · Blind  
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1 Introduction 

Image super-resolution (SR) is a family of technologies recovering a super-resolved 
image from a single image or a sequence of images of the same scene. However, it is 
not easy to obtain an adequate number of LR observations in many practical applica-
tions. Therefore, single image super-resolution has attracted great attentions in recent 
years. 

Machine learning based methods are promising technologies for SR problem, and it 
has become the most popular topic in single image SR field. Freeman et al. [1] proposed 
example-based learning method firstly. The algorithm predicted HR patches from LR 
patches by solving Markov Random Field (MRF) model via belief-propagation algo-
rithm. Then, Sun et al. enhanced discontinuous features such as edges and corners etc. 
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by primal sketch priors, which extended example-based method further [2]. To improve 
execution efficiency, Chang et al. [3] proposed nearest neighbor embedding (NNE) 
method motivated by the philosophy of locally linear embedding (LLE) [4]. They as-
sumed LR patches and HR patches have similar space structure. The coefficients of LR 
patch can be solved through least square problem, which are then applied to HR patches 
directly. NNE utilizes a few of training data to represent a test sample and reduces the 
computation time dramatically. However, fixed number of NNs may cause over-fitting 
and/or under-fitting phenomenon [5]. Aiming at this problem, Yang et al. [6] proposed 
an effective method based on sparse representation, which selects the number of NNs 
adaptively. However, there exist two main issues about original sparse representation 
methods: the compatibility between training samples and test samples, and the mapping 
relation between LR patch space and HR patch space. More recently, Glasner et al. [7] 
exploited image patch non-local self-similarity within image scale and cross-scale for 
single image SR tasks, which makes an effective solution for the compatibility problem 
between training samples and test samples. As for the mapping relation, LR patch space 
and HR patch space are tied by some mapping function, which could be unknown and 
not necessarily linear [8]. The direct mapping [6] actually could not reflect this un-
known relation correctly. Yang et al. [9] proposed another joint dictionary training ap-
proach to learn the duality relation between LR/HR patch spaces. The method essential-
ly concatenated the two patch spaces and converts the problem to the standard sparse 
representation in a single feature space. Further, they explicitly learned the sparse cod-
ing problem across different feature spaces. The learning problem was modeled as a bi-
level optimization problem, where the optimization included an L1 norm minimization 
problem in its constraints. This is the so-called coupled dictionary learning (CDL) [8] 
algorithm.  

The precision of the training data and the computational time demanding are two 
main challenges of current single image SR algorithms. The performance of SR me-
thods significantly deteriorates when the blur kernel we used deviates from the true 
one [10]. To ensure the precision of the training data, it is necessary to estimate the 
true blue kernel from the input image itself. But abundant samples and iterations 
make it very time-consuming. In addition, solving a L0/L1 norm constrained optimiza-
tion problem for test samples is also computationally demanding. In this paper, we 
present a novel single image SR method considering both SR effect and the accelera-
tion for the algorithm. The proposed approach estimated the true blur kernel based on 
minimizing the dissimilarity between cross-scale patches firstly. Then, LR/HR 
coupled dictionaries were trained through input image downsampled by estimated 
blur kernel, which improved the quality of training samples and compatibility be-
tween training set and test set. A SPP strategy is employed both in blur estimation and 
SR recovery stage, which is based on the observation that nature images usually con-
sist of continuity and discontinuity concurrently, and traditional interpolation methods 
(such as bicubic and cubic convolution interpolation) have a higher efficiency but 
perform on par with learning based methods in smooth area. 
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2 Related Work 

2.1 Internal Statistics and Blur Kernel Estimation 

One of the most useful internal statistical attributes of natural image patches is the 
patch recurrence within and cross scale, which is exploited by Glasner et al. in 2009 
[7]. NLSS can be exploited as useful prior knowledge for various image restoration 
tasks, such as super resolution [7, 12-15], image denoising [16], deblurring [17] and 
inpainting [18] etc. However, it is not necessary to consider the redundancy of all 
patches most of the time. Maria et al. [12] quantified the property by relating it to the 
spatial distance from the patch and the mean gradient magnitude |grad| of the patch. 
Tomer Michaeli et al. [10] utilizes the non-local self-similarity to estimate the optimal 
blur kernel, which maximizes the cross-scale patch redundancy iteratively. For each 
small patch in input image, they find a few NNs in down-sampled version of input 
image and each NN for the small patch corresponds to a large patch in input image. 
All the patch pairs construct a set of linear equations which is solved using weighted 
least-squares to obtain an updated kernel. Fig.1 (a) shows the cross-scale blur kernel 
estimation process.  

Actually, the method of [10] is designed to solve a convolution kernel, which 
makes cross-scale patch as redundant as possible. It could be interpreted as maximum 
a posteriori (MAP) estimation process. However, as we can see in Fig.1 (b) and Fig.1 
(c), the effect of blurring in smooth area is unconspicuous. Therefore, smooth patch 
almost contributes nothing in blur kernel estimation with respect to structured patch. 

   

(a)                     (b)                 (c) 

Fig. 1. Descriptions of cross-scale patch redundancy and blurring effect on different patches in 
natural images. (a) Cross-scale patch redundancy (see context), where k is blurring kernel. (b) 
Structured patch and smooth patch in clean “Monarch”. (c) Structured patch and smooth patch 
in blurred “Monarch”. (c) The result of convolving (b) with a 11× 11 Gaussian kernel with

1.5σ = . Obviously, Red structured patch is very different after blurring with Gaussian kernel, 
whereas yellow smooth patch almost do not changes visually. 

2.2 Coupled Dictionary Learning 

In SR tasks, HR feature space HF  and LR feature space LF  constitute the coupled 

feature space together. There exists a certain unknown relation : L H→F FM  be-

tween two feature spaces. For some specific feature H∈x F and L∈y F , we have

( )=x yM . The goal for coupled dictionary learning is to find a coupled dictionary 
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pair HD  and LD  for feature space HF  and LF  respectively, so that we can use 

the sparse representation of any test signal L∈y F  in terms of LD  to recover the 

corresponding latent HR signal H∈x F  in terms of HD  directly. Under the condi-

tion of L1 norm, it can be expressed as following equations for any coupled signal pair 
formally: 

 2
2 1
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where { }| 1,2, ,i Hi N= =π π   is the set of sparse representation on coupled feature 

spaces. LN  and HN  are the numbers of atom in LD  and HD respectively. iα  is 
the sparse representation coefficient vector for the i th signal pair, and λ  is the 
regularization parameter as tradeoff between the reconstruction error and the L1 norm 
regularization terms. To balance the reconstruction error on observation feature space 
and latent feature space, CDL algorithm changes the objective function of [8]: 
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to the following form: 

 ( )( ) ( ) ( )2 2
2 2 2 2

, , 1

1
arg min γ 1 γ s.t. : , 1, : , 1

2

H

H L

N

H i i L i i H L
i

i i
=

− + − − ≤ ≤
D D

D α x D α y D D
π

 (4) 

where γ  is the parameter balancing the reconstruction error terms on both feature 
spaces. Eqn. (4) is solved by alternatively optimizing over LD  and HD while keep-
ing the other fixed. Stochastic gradient descent using implicit differentiation is  
employed to solve LD  during the iterative process. 

3 Proposed Approach 

3.1 Blind Kernel Estimation with SPP 

We use Y to represent input LR image, and X to be latent HR image. For each small 
patch ip  in the input image Y, we can find a few NNs s

ijq  for it in down-sampled 

version sy . The “parent” patches ijq  right above s
ijq are viewed as the candidate par-

ent patches of ip . The patch pairs{ },i ijp q  are used to construct a set of linear equa-

tions, which is solved by weighted least square method. According to [10], the weight 
of each “parent” patch is calculated by the following formula, so that good NNs con-
tribute more than their poor counterparts: 



26 X. Zhao et al. 

 
( )

( )

2 2

2 2

1

exp

exp
i

s
i ij

ij M
s

i ij
j

w
σ

σ
=

− −
=

− −

p q

p q
  (5) 

where iM  is the number of NNs of each small patch ip  in Y. σ  is the standard 

deviation of noise added on ip , and s is scale factor. Note that we apply the same 

symbol to express column vector corresponding to the patch. Maximizing the  
cross-scale NLSS of Y with respect to scale factor s is equivalent to minimizing the 
dissimilarity between cross-scale patches. Therefore, we solve the following L2 norm 
optimization problem for BKE: 
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where N is the number of small patches in Y. Matrix ijR  corresponds to the operation 

of convolving with ijq  and down sampling by s. C is a matrix used as the penalty of 

non-smooth kernel. The second term of Eqn. (6) is kernel prior and λ  is the balance 
parameter as the tradeoff between the error term and kernel prior. By setting the gra-
dient of the objective function in Eqn. (6) to zero, we can get the update formula of k: 
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This is similar to the result of [10], which can be interpreted as maximum a post-
eriori (MAP) estimation on k. However, our blur kernel estimation has two essential 
differentials with respect to [10]. Firstly, our method is driven by the idea of minimiz-
ing the dissimilarity between cross-scale patches while [10] tends to maximize the 
similarity directly. Secondly, the number of NNs of each small patch is not fixed 
which provides more flexibility during solving least square problem. Therefore, the 
terminal criterion cannot be the totality of NNs. We use the average patch dissimilari-
ty (APD) as terminal condition of iteration: 
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To eliminate the effect on BKE caused by smooth patches, we selectively employ 
structured patches to calculate blur kernel (see Fig.1) according to the average gra-
dient magnitude |grad| of a small patch. Specifically, with removing DC component, if 
the average gradient magnitude |grad| of each query patch is smaller than a threshold, 
then we abandon it. Otherwise, we use it to estimate blur kernel according to Eqn. (7). 
According to the research of [12], finding NNs for structured patches requires larger 
search region. We need to perform search in entire image here.  
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3.2 SR Recovery 

We assume py  is a LR patch which contains original image data, y is LR patch  

feature extracting from py .We solve L1 norm constrained optimization problem: 

 
2
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argmin L μ− +

α
y D α α   (9) 

where μ  allows alleviating the ill-posed problems and stabilizes the solution. y cor-

responds to a test LR patch extracted from enhanced interpolation version of input 
image. LD  is the LR dictionary trained by CDL. The solution of Eqn. (9) is found by 
solving a L1-regularized Lasso problem. This can be done by Sparse Learning with 
Efficient Projections (SLEP) [20]. After we get the coefficient vector α  of LR patch 
feature vector y, HR patch feature then can be computed directly by: 
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where HD  is the HR dictionary trained by CDL. Then, Recovery HR image patch 

px  can be obtained by: 

 ( )p c u v= × ⋅x x +   (11) 

where 

( )Mean pu = y , and 2pv u= −y  

Here c is a constant. Generally, there are two directions to accelerate the SR process: 
reducing the number of patches to process and finding a fast solver for L1 norm mi-
nimization problem Eqn. (1). A selective patch process strategy is adopted in our 
method as [8]. However, the criterion of selecting patches is the gradient magnitude 
|grad| instead of the variance of a patch for the spatial gradient magnitude of a patch is 
more expressive than variance when removing mean according to [12]. Thus, if the 
spatial gradient magnitude of a patch is smaller than a threshold, we simply apply 
bicubic interpolation for SR recovery. Otherwise, we employ sparse representation 
method to estimate HR image patch. 

4 Experimental Results 

In this section, we give some experimental results about blur kernel estimation and 
SR recovery. All the experiments are performed on a Philips PC with 8.0 GB memory 
and running a single core of Intel Xeon 2.53 GHz CPU. We mainly compare our blur 
kernel estimation method with [10] in terms of kernel accuracy and efficiency, while 
SR performance is compared with several state-of-the-art SR algorithms.  
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4.1 Comparisons for BKE 

We performed × 2 and × 3 SR in our experiments on BKE. When scale factor s = 2, 
we set the size of small query patches ip  and candidate patches s

ijq  of NNs to 5 × 5, 

while the size of “parent” patches ijq  are set to 9 × 9. Both ip  and s
ijq  do not 

change size, but “parent” patches are set to be 13× 13 patches when perform × 3 SR. 
Noise standard deviation σ  is assumed to be 5. Parameter λ  in equation (6) is set 
to 0.25, and matrix C is chosen to be the derivative matrix corresponding to x and y 
directions of “parent” patches. The threshold of |grad| for selecting query patches is 
set to 10. Fig. 2 shows the structured parts used to perform BKE, and the blur kernels 
of “Monarch” and “Flower”. It can be cleanly seen that input data are seriously 
blurred and inaccurate. Besides, there is only a few part of original image data that 
can used for BKE due to selective patch processing. 

Firstly, we present the BKE results estimated from “Monarch” and “Flower” in 
Fig. 3 to illustrate the accuracy of the recovered kernel qualitatively. As shown, both 
algorithms can estimate the rough shape of the ground-truth kernel, but our approach 
gives more accurate results on both kernel size and shape. This is true especially when 
the ground-truth one is motion kernel. On the one hand, our blurring kernel estimation 
does not take fixed number of NNs for each query patch in LR images. This makes  
 

  

                  (a)                                     (b) 

Fig. 2. Blurring on original images and selective patch process in BKE. (a) The first one is gray 
“Monarch” image blurred by a 9 × 9 Gaussian kernel with standard deviation 1.5σ = , the 
second one is structured content selected to estimate blur kernel. (b) The first image is gray 
“Flower” image blurred by a 9 × 9 “motion” kernel with len = 5 and theta = 45, the second one 
is same as top row. 

      

(a) Gaussian estimation                 (b) Motion estimation 

Fig. 3. BKE Comparisons with [10]. (a) Gaussian kernel estimation with “Monarch” image 
showed in Fig.2. (b) Motion kernel estimation with “Flower” image showed in Fig.2. The size 
of kernel in first row is 13 13× , the second row is 9× 9. 



Single Image Super-Resolution via Blind Blurring Estimation and Dictionary Learning 29 

BKE more flexible, and reduces the adverse impact caused by over-fitting or/and 
under-fitting. On the other hand, Selective patch processing strategy measured by the 
average gradient amplitude |grad| abandoned useless smooth patches and kept more 
structured non-smooth patches, which relieved the computational demanding for 
CPUs significantly. 

We collect the average MSE of each NN during iterations as shown in Fig4 (a). 
Though we selectively use structured patches to estimate blur kernels, the average 
MSE of our algorithm still smaller than [10]. This is mainly attributed to that we em-
ploy unfixed number of NNs to construct the set of linear equations. As we can see in 
Fig. 4 (a), our BKE method converges about 8th iteration, whereas the algorithm of 
[10] converges at almost 15th iteration. After the convergence of algorithms, the av-
erage MSE between cross-scale patches of our algorithm is also smaller than Michae-
li’s algorithm. Therefore, the selective patch process and adaptive number of NNs 
produce more accurate BKE results, but need less iteration times. 

  

                    (a)                                  (b) 

Fig. 4. BKE efficiency Comparisons with [10]. SR algorithm is original sparse representation 
proposed by Yang et al. [6]. (a) The attenuation of average MSE. (b) The change of ERGT as 
presented in [10]. 

We apply the same measures with [10] to compare the effect of estimated kernels 
on SR algorithms: The Error Ratio to Ground Truth (ERGT), which measures the 
ratio between the SR reconstruction error with estimated kernels and the SR recon-
struction error with the ground-truth one 
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where kX  and kX  are the recovered HR images with estimated kernel k  and 

ground-truth kernel k respectively. If ERGT is close to 1, it indicates that the esti-
mated kernel is nearly as good as the ground-truth kernel. Fig. 4 (b) shows the results 
of applying both estimated kernels in the SR algorithm proposed by Yang et al. [6]. 
Here, we super resolve all the five test images with scale factor s = 2, and collect the 
average ERGT at each iteration. In the whole iterative process, the ERGT of our  
algorithm is always closer to 1 than [10].  

Table 1 presents the effects of thresholding on SR recovery accuracy and 
processing time with sparse representation solved by L1 norm minimization problem. 
Instead of simply using the variance of a small patch as the criterion of patch  

1 3 5 7 9 11 13 15
30

35
40
45
50
55
60

Iterations

A
ve

ra
ge

 M
SE

 

 

Ref [10]
Our approach

1 3 5 7 9 11 13 15
1

1.5

2

2.5

3

Iterations

E
R

G
T

 

 

Ref [10]
Our approach



30 X. Zhao et al. 

selection, we adopted average gradient magnitude |grad| presented in [12] to filter 
smooth patches. As showed in table 1, with the increase of the threshold of |grad|, the 
consumed time decreases rapidly whereas SSIM reduces slightly. Table 2 shows the 
time statistics of several methods consumed in reconstruction. We use bicubic inter-
polation as reference and assume its time consumption is 0 for each case. Because of 
selective patch processing, our method provides the least amount of time consumption. 

Table 3 shows PSNR and SSIM comparisons between the proposed method and 
several state-of-the-art SR algorithms on equal conditions. The most important equiv-
alent condition is all input images for each algorithm are obtained by clean images 
blurred with default blur kernels, which is also very different from current general 
experimental methodologies. Our approach brings big improvement over PSNR and 
SSIM. Actually, this is mainly due to that our BKE process aimed directly at counte-
racting the blurring effect during degeneration of natural images. Moreover, the 
coupled dictionary learning [8] gives us accurate mapping relation between LR and 
HR feature spaces, which reduces reconstruction error further. 

Table 1. Thresholding effects on SR recovery accuracy and processing time with sparse 
representation solved by L1 norm optimization problem 

Thresholds on |grad| 0 10 20 30 

Lena ( × 2) 
SSIM 0.9538 0.9527 0.9514 0.9507 

Time (s) 53.56 44.25 27.74 15.67 

Monarch (× 2) 
SSIM 0.9428 0.9415 0.9405 0.9386 

Time (s) 63.78 41.13 22.87 11.86 

Table 2. Computation comparisons between several typical methods and proposed algorithm 
(threshold on |grad| is 15) 

Test 
images 

Bicubic (s) Yang et al. [6] (s) Zeyde et al. [19] (s) Ours (s) 

Baboon 0 86.49 56.81 36.54 
Flower 0 34.60 38.62 23.03 
Lena 0 79.04 53.72 32.82 

Monarch 0 38.91 57.82 24.71 
Tower 0 41.19 24.46 17.05 

Table 3. SR comparisons between several state-of-the-art methods and proposed algorithm 
(threshold on |grad| is 15) 

No. scale 
Yang et al. [6] Zeyde et al. [19] Timofte et al. [11] Our results 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 × 2 30.2146 0.9083 30.3194 0.9152 30.3491 0.9127 30.5430 0.9335 
2 × 2 32.7452 0.9361 32.7342 0.9368 32.7703 0.9376 33.1741 0.9496 
3 × 3 28.9768 0.8935 29.3156 0.8994 29.3036 0.8967 29.8251 0.9163 
4 × 3 28.3827 0.8921 28.3294 0.8954 28.3278 0.8917 29.0495 0.9083 
5 × 3 27.1774 0.8618 27.3329 0.8574 27.3863 0.8613 28.6172 0.8853 

The number of test images: 1. Baboon; 2. Flower; 3. Lena; 4. Monarch; 5. Tower 
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Fig.5 shows some visual comparisons of SR reconstruction between our algorithm 
and several state-of-the-art SR algorithms proposed recently. For layout purpose, all 
images are diminished when inserted in the paper. Note that the input images of all 
algorithms are obtained through reference images blurring with several blur kernel. 
Namely, input image data is set to be of low quality via some blur kernels in our ex-
periments for the sake of simulating many actual application scenarios. When down-
sampling blurred input images with kernels before SR reconstruction, all of the algo-
rithms adopted bicubic kernel to simulate the degradation of input images, whereas 
our method employed the results of BKE. Though it is well known that the three SR 
algorithms presented in Fig.5 are efficient for many SR tasks, they fail to reconstruct 
distinct details when test images are degenerated severely. This is mainly because of 
the great deviation between the blurring kernel used by these algorithms and the 
ground-truth one. 

 

     (a)         (b)             (c)          (d)           (e)         (f) 

Fig. 5. SR reconstruction comparisons. (a). reference images. (b). blurred input with default 
kernels. (c). Yang et al. [6]. (d). Zeyde et al. [19]. (e). Timofte et al. [11]. (f). our results. Note 
that input images are obtained by blurring original clean images with different blur kernels for 
test purpose. (c), (d) and (e) adopted bicubic kernel to down-sample input images while our 
method employed estimated kernel. Ground-truth kernels: top row ( × 2) is 9 × 9 Gaussian 
kernel with 1.5σ = ; the second row (× 2) is 9× 9 motion kernel with len = 5 and theta = 45; 
the third row (× 3) is 13× 13 Gaussian kernel with 1.5σ = ; the fourth row ( × 3) is 11× 11 
Gaussian kernel with 1.5σ =  and the last row (× 3) is 13× 13 motion kernel with len = 5 and 
theta = 45.  
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5 Conclusion 

We proposed a novel single image SR framework aiming at improving the SR effect 
and time performance in this paper. The algorithm framework mainly contains blur 
kernel estimation and SR recovery based on CDL. The former is realized by minimiz-
ing dissimilarity of cross-scale image patches, which is slightly similar to the MAPk 
estimation approach proposed by Michaeli et al. [10]. The latter relies on a coupled 
dictionary learning process [8]. The selective patch processing utilized in these two 
stages is dependent on the criterion of average gradient amplitude. The SR effect of 
our method is guaranteed by improving the quality of training samples. The SPP 
strategy has ensured the improvement of time performance via reducing the number 
of query patches. All above-mentioned processes make our SR algorithm could 
achieve the better level of performance than several typical SR approaches. However, 
we can find out, from Table 1 and Table 2, that solving L1 norm optimization problem 
when reconstructing is extraordinarily time-consuming. SPP should not be the single 
and final solution for efficiency improvement. Therefore, our further research work 
will be finding out other better methods for improving the SR effect and reducing the 
time consumption of the algorithm further. 
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