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In magnetic resonance imaging (MRI), spatial resolution is an important and critical imaging parameter
that represents how much information is contained in a unit space. Acquiring high-resolution MRI
data usually takes a long scanning time and is subject to motion artifacts due to hardware, physical,
and physiological limitations. Single image super-resolution (SISR) based on deep learning is an
effective and promising alternative technique to improve the native spatial resolution of magnetic
resonance (MR) images. However, because of the simple diversity and single distribution of training
samples, the effective training of deep models with medical training samples and improvement of
the tradeoff between model performance and computing overhead are major challenges. In addition,
deeper networks are more difficult to effectively train since the information is gradually weakened
as the network deepens. In this paper, a novel channel splitting and serial fusion network (CSSFN) is
presented for single MR image super-resolution. The proposed CSSFN splits hierarchical features into
a series of subfeatures, which are then integrated together in a serial manner. Hence, the network
becomes deeper and can discriminatively and reasonably deal with the subfeatures. Moreover, a dense
global feature fusion (DGFF) is adopted to integrate the intermediate features, which further promotes
the information flow in the network and helps to stabilize model training. Extensive experiments on
several typical MR images show the superiority of our CSSFN models to other advanced SISR methods.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is an essential and widely-
used tool for diagnosis and image-guided therapeutics. Usually,
high-resolution (HR) imaging is preferred in clinical practice due
to clearer image structure and texture, as well as the benefits of
subsequent analysis and processing [1]. However, the acquisition
of HR images is constrained by hardware, physical and physio-
logical factors, and improving the spatial resolution of magnetic
resonance (MR) images typically reduces the signal-to-noise ratio
(SNR) or prolongs the imaging time [2], which further increases
the risk of MR images affected by motion artifacts.

Super-resolution (SR) is an effective and cost-efficient alter-
native technique to increase the spatial resolution of MR images,
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which aims at recovering an HR image from one or multiple low-
resolution (LR) images. To date, a large number of SR methods
have been investigated and proposed for both natural images
and medical images, e.g., interpolation-based methods [3], edge-
guided methods [4], modeling/reconstruction methods [5], exam-
ple learning methods [6], and sparse representation methods [7].
However, the performance of these conventional methods is es-
sentially limited since they apply inadequate extra information
and models with limited representational capacity to solve the
ill-posed inverse problem of image SR tasks [8].

In recent years, single image super resolution (SISR) based
on deep learning [9] has exhibited great superiority over con-
ventional SR methods. A pioneering work that uses convolu-
tional neural networks (CNNs) [10] to deal with SISR is the
Super-Resolution Convolutional Neural Network (SRCNN) [11].
It implicitly learns an end-to-end mapping function between
LR and HR images by utilizing a fully-convolutional network
(FCN). Subsequently, more advanced SISR methods based on
CNNs were proposed. Some typical examples are DRCN [12],
TDAN [13], VDSR [14], MemNet [ 15], ESPCNN [16], SRResNet [17],
EDSR [18], RDN [19], CMSCN [20], RCAN [21], EBRN [22], SAN [23],
CSNLN [24] and NLSN [25] etc. These models have overwhelming
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Fig. 1. Model performance versus model scale between several deep models. The results are evaluated on T2-weighted MR images of the IXI dataset for SRx2. B2

and B4 imply the number of branches when performing channel splitting.

advantages over traditional methods and greatly promote the
best state of SISR performance. However, they are mainly targeted
at natural images, instead of medical images (or more specifically,
MR images). Therefore, they may be unsuitable for solving medi-
cal image SR tasks due to the degradation of training examples [8]
although they have excellent performance on natural images.

Due to the tremendous success of deep learning techniques
in computer vision and pattern recognition, some deep learning
based methods specializing in the SISR tasks of medical images
have also emerged [26,27]. These methods utilize relatively shal-
low networks to process medical images, e.g., Pham et al. [26]
presented an algorithm for super-resolving single brain MR im-
ages according to SRCNN [11]. Despite their extension to 3D
cases (named SRCNN3D), the entire network is very shallow and
the representative capacity of the model is relatively limited,
resulting in unsatisfactory performance.

The depth of CNN models is of crucial importance for image
SR [21], and is usually defined as the longest path from the
input to the output of the network [8,20]. However, deeper net-
works are typically more difficult to fully and effectively train,
especially with medical images due to the degeneracy of train-
ing samples [8]. Actually, it is experimentally verified that the
original EDSR model [18] with approximately 43M parameters
and 70 layers of depth is difficult to be well-trained with 2D
proton density (PD) images [8]. Although Zhao et al. [28] trained
the EDSR [18] using T1-weighted magnetization-prepared rapid
gradient echo (MP-RAGE) images, the reported results are not
satisfactory, possibly due to over/underfitting. In particular, this
is probably because the EDSR, which has enormous parameters
and a very deep structure, is not adequately well-trained with
“good” training samples. In this regard, more exploration is needed
to determine whether deeper networks are capable of further con-
tributing to improving the performance of medical image SR and
how to construct trainable networks with much deeper structures
for medical images.

A recent work [8] has alleviated the dilemma between the
trainability and the performance of CNN models for MR image SR
to some extent. The work presented an effective way to deepen
the network but without significant enlargement in the number
of model parameters, i.e., channel splitting. The model, however,
is a kind of multistream structure, and multiple branches for in-
formation transmission are formed by channel splitting instead of
the reuse of preceding features [20,29]. The multistream structure
indicates that information flow in the network is locally parallel.
In this paper, we present a serial information fusion mechanism

for channel splitting. The proposed model, which we term the
channel splitting and serial fusion network (CSSEN), first splits
the hierarchical features into a series of subfeatures and then
fuses them together in a serial manner. Despite channel splitting,
our CSSFN is a single-branch network that is essentially different
from the CSN [8]. Therefore, it can reach much deeper depths (up
to 90 layers) without drastic parameter expansion (e.g., CSSFN-B4
in Fig. 1(b)). On the other hand, channel splitting also allows our
CSSFN model to deal with intermediate features discriminatorily.
However, different from [8], the channel discrimination ability
compared to the baseline is mainly derived from the subfeatures
located at different network depths.

However, increasing the network depth will significantly in-
crease the training instability when network parameters are
roughly the same, resulting in training nonconvergence or failure.
To alleviate the instability of model training caused by the single-
branch structure and increase in network depth, we adopt a
dense global feature fusion (DGFF) strategy [30] to improve the
information flow. Although the DGFF increases model parameters
slightly, our models still have moderate parameters compared
with EDSR [18], RDN [19] and CSN [8]. Our CSSFN consists of a
series of channel splitting and serial fusion blocks (CSSFB), each of
which has one or more interblock connections to all subsequent
blocks, thereby propagating its local features to all successors. The
detailed structure of the proposed model is illustrated in Figs. 2
and 3. In summary, the main contributions of this work are as
follows:

e We further improve the tradeoff between model perfor-
mance and computing overhead for MR image SR by in-
troducing a serial local feature fusion (SLFF) strategy for
channel splitting;

e Through the combination of SLFF and DGFF, we alleviate
the dilemma between the trainability and network scale
caused by the degradation of medical training samples, and
accidentally obtain performance gain;

e We argue that channel splitting helps to improve channel
discrimination ability and reduce the risk of over/
underfitting. However, once channel splitting is performed,
increasing the number of subfeatures will exacerbate the
fitting problem and result in performance degradation;

e We experimentally confirm that, through pseudo 3D ex-
ecution, training samples of degraded MR images are in-
deed more likely to cause the fitting problem of large-scale
networks, verifying the conjecture of [8].
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Fig. 2. Overall architecture of the proposed CSSFN model. The symbol “+” indicates elementwise summation between two tensors with the same shape. GSC and ESC
denote the global skip connection and external skip connection, respectively. The hierarchical features are integrated together in a dense learning manner (DGFF).
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Fig. 3. Basic building block, CSSFB, consisting of m stacked channel splitting and serial fusion units (CSSFU). (a) Each CSSFB also has a short skip connection (SSC)
to form local residual learning. (b) The input feature of each CSSFU is split into q subfeatures. Cuboids in light gray imply subfeatures from channel splitting of the
input feature, and those in dark gray denote the subfeatures produced by the 3 x 3 conv layer.

The remainder of this paper is organized as follows. We first
present some previous work related to the proposed model in
Section 2. The proposed CSSEN is illustrated in detail in Section 3
and the experimental results are presented in Section 4. Finally,
we discuss some related topics in Section 5 and conclude the
work in Section 6.

2. Related work
2.1. MR image super-resolution

The purpose of MR image SR tasks is to overcome hardware
limitations and meet the clinical needs of imaging procedures
by reconstructing HR images from LR acquisitions using post-
processing methods. SR methods could have strong impacts on
structural MRI when focusing on cortical surface or fine-scale
structure analysis [26]. The application of SR methods to MR im-
ages initially focuses on multiple image super-resolution (MISR),
e.g., [5,31]. The MISR methods, however, usually need calibration
and integration between multiple LR images, which is a very chal-
lenging problem in itself and is hard to achieve with satisfactory
performance [8].

SISR methods can avoid the difficulty of calibration and inte-
gration of LR images, where only one LR image is required to re-
construct its HR counterpart. A major problem with SISR methods
is that limited extra information is available for HR image recon-
struction. Subsequently, some SR methods based on traditional
machine learning, e.g., sparse representation [7], example learn-
ing [32] and compressive sensing [33] etc., have emerged. How-
ever, the limited representational capability of these SR methods
makes them unable to execute accurate and highly nonlinear
mapping between LR and HR images. Recently, advanced SISR
methods based on deep learning [9] have been applied to MR
image SR tasks [1,8,26-28,34], which have greatly promoted the

performance of SR technologies for medical images. Two recent
works, W2AMSN [35] and SERAN [36], have improved the perfor-
mance of MR SR through an attention mechanism and multiscale
feature fusion. They further enrich the research on single MR
image super-resolution based on CNNs.

2.2. Channel discrimination

The feature maps on different channels of deep CNN models
have different types of information and different impacts on the
performance of deep models [21]. It is reasonable to deal with
these features discriminatively. One typical manner for channel
discrimination is the self-attention mechanism, which is broadly
viewed as a tool to bias the allocation of available processing
resources toward the most informative components of the input
signal [37]. In recent years, it has been introduced to deep neural
networks (DNNs) to boost the performance of deep models, such
as image generation, image captioning, image classification and
image restoration. All these methods have further improved the
best state of related fields. For instance, the residual channel
attention network (RCAN) [21] pushed the state-of-the-art per-
formance of SR tasks forward on natural images, with a channel
attention mechanism and an extremely deep architecture (over
400 layers).

However, few works have investigated the effect of channel
discrimination for low-level computer vision tasks in the med-
ical image processing community (e.g., MR image SR). In this
respect, a representative work for single MR image SR is the
CSN network [8], where channel discrimination is achieved by
channel splitting and merge-and-run mapping between different
branches [29]. This model adopted a parallel two-way channel
splitting strategy to handle the hierarchical features on different
channels, which limited the network depth to some extent. Mo-
tivated by the channel discrimination and increase in network
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Fig. 4. Stage mappings for comparing branch information fusion (BIF). C, R and
+ denote Conv, ReLU, and skip connection respectively. (a) Basic Conv + ReLU.
(b) Merge-and-run [29] with channel splitting [8]. The number of branches is
set to 2 for display purposes, but in the experiments, it is set to 4 for fair
comparison. (c) The proposed serial fusion.

depth, we integrate subfeatures into a single branch in a serial
manner (Fig. 3(b)). In this way, the network becomes deeper and
thinner (if we keep the channel of subfeatures fixed), which is
analogous to stretching a rubber band. Despite the single-branch
structure, serial fusion retains the channel discrimination ability
of the network, because these subfeatures have different network
depths in feed-forward or feed-back propagation.

2.3. Hierarchical feature fusion

The notorious problem of gradient vanishing and weakened
information flow becomes more obvious as the network depth
increases [21], which seriously hinders the training of deep mod-
els. Unfortunately, the degradation of training samples will fur-
ther aggravate the difficulty of training deep models for med-
ical images [8]. To promote information transmission and im-
prove the trainability of deep networks, many recent works have
been devoted to resolving these problems. A popular method
is to fuse the hierarchical features through skip connections,
e.g., DenseNet [30] helps to explore new features, and ResNet [38]
contributes to the reuse of preceding features. The basic idea
of fusing hierarchical features by residual and dense learning
is also broadly applied to many CNN-based methods [14,17-
19,21,34,39] to build very wide and deep models for performance
improvement.

Due to modular design of the recent CNN-based models, hi-
erarchical feature fusion can be divided into local feature fusion
(LFF) and global feature fusion (GFF), which integrate intrablock
and interblock features, respectively. LFF is conducive to learn-
ing more effective hierarchical features and stabilizing model
training [19], while GFF enables short paths to be built from
high-level features to low-level features directly and ease the
vanishing gradient problem for training very deep networks [30].
In the proposed CSSFN, local features are fused together in a
serial manner, as shown in Fig. 3(b) and Fig. 4(c). It can be
viewed as a manner of partially dense learning where subfea-
tures are “densely” connected to subsequent layers. A short skip
connection (SSC) [19,21] (shortcut connection [38]) is then used
to conduct local residual learning. For GFF, we present a dense
global feature fusion (DGFF) for effective feature exploitation
and important information preservation (Fig. 2). In addition, it
helps to alleviate the instability of model training caused by
the increase in network depth and the decrease in network
width.

Knowledge-Based Systems 246 (2022) 108669

3. Proposed method
3.1. Network architecture

In this work, we focus on the task of single 2D MR image SR.
Given an LR image x € R™™, the target is to recover an HR
image y € RU"W*("®) that corresponds to LR input X, where r is
the scaling factor. The overall structure of the proposed CSSFN is
outlined in Figs. 2 and 3, which consists of three typical parts,
i.e.,, shallow feature extraction, nonlinear mapping from shallow
features to deep features and HR image recovery. As investigated
in [8], we extract the shallow features by two 3 x 3 conv layers
with a 1 x 1 conv layer in the middle. We denote Fey(-) as
the corresponding mapping function of the entire shallow feature
extraction stage, then the extracted shallow features Xs¢ can be
represented as:

XsF = ]:(?Xt(x)s (1)

where x stands for the original LR input. Next, X is fed into
the nonlinear mapping, which contains a series of stacked CSSFB
blocks. The entire nonlinear mapping process can be expressed as
follows:

Xpr = Fuim(Xo), (2)

where Xo = Xgr is the extracted shallow features and Fpm(-)
is the function corresponding to the entire nonlinear mapping.
To make more full use of features and further stabilize model
training, we also use GFF [8,19] to integrate these intermediate
features. However, unlike [8,19], we integrate hierarchical fea-
tures in a dense learning manner [30], instead of concatenating all
interblock features together and then fusing them througha 1 x 1
conv layer. Therefore, the input to the ith building block is the
concatenation of the output feature maps of all preceding blocks,
i.e, [Xi_1,...,X1,Xo], where [...] denotes the concatenation op-
eration along the channel direction. Assuming that the mapping
function of the ith building block is }‘l’;(~), we then have:

Xi = Fp([Xi-1, .-, X1, Xol), i=1,2,...,m, (3)

where n is the number of building blocks in the network. Each
block is connected to all preceding and subsequent blocks, and
therefore facilitates the information propagation of the entire
network. Iteratively, we can obtain the final output of all these
stacked blocks:

Xp :fg([xﬂ—]s--'txlsxo])' (4)

[Xpn, ..., Xq] is further fused as the deep feature Xxpg through
alx 1and a3 x 3 conv layers, followed by a global skip
connection (GSC) [8,14,18,19]:

"XO])7 (5)

where F.(-) corresponds to the mapping function of two conv
layers, as shown in Fig. 2. Subsequently, deep feature Xpr is used
to recover HR image y by the reconstruction subnetwork:

Xpr = Xo + Fc([Xn, . .

Y = Frec(Xpr) = Fup(Xor) + X, (6)

where F,p(-) represents the mapping function of the upscale
module followed by a 3 x 3 conv layer, and X is the (bicubic)
interpolated version of X. This is termed as an external skip
connection (ESC) in [8], which approximates the residual be-
tween the original input and the final output of the network by
interpolation [14], and further contributes to stabilizing model
training.

As suggested in [18], we use the L; loss as the training ob-
jective. Given a training dataset D = {x{,y®}”} where |D|
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Table 1
Statistics of network depth and model parameters (c = 256, n = m = 4).
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Simple 2D (cip, = 1)

Pseudo 3D (ci; = 96)

B q=2 qg=4 q=2 qg=4

r X2 x3 x4 x2 x3 x4 X2 x3 x4 x2 x3 x4
D 59 59 60 91 91 92 59 59 60 91 91 92
P 16.4 19.4 18.8 111 14.0 13.5 16.8 19.8 19.2 115 14.5 13.9

Cip: input channel; B: network branches; D: network depth; P: model parameters.

denotes the number of training examples in D, the loss function
is expressed as:

|D|

= i 2 Z Ily®

Fret(+) denotes the function corresponding to the entire CSSFN
network, and @ is the set of model parameters. In terms of the
overall model structure, our CSSFN is very similar to other typical
SR models, mainly to make a relatively fair comparison and to
highlight the role of our serial SLFF.

]'—net )”1 (7)

3.2. Serial stack over serial local feature fusion

The building block of our model, i.e., CSSFB, is structured in
Fig. 3(a). At the beginning of each CSSFB, there is a 3 x 3 channel
compression layer that is adopted to reduce the feature channel
to a predefined value c, thereby improving the computational
efficiency. According to (3), we have:

Xi—1,0 = Hi([Xi—1, ..., X1, X0]), i=1,2,...,n (8)

where #S(-) represents a convolutional layer with 1 x 1 kernel
size and c output channels. This indicates that x;_; o keeps ¢
channels. Subsequently, a series of stacked channel splitting and
serial fusion units (CSSFUs) form the main part of our CSSFB, as
shown in Fig. 3(a). Denoting the function of the jth CSSFU as F}(-),
which we will describe in 3.3 in detail, we have the following
formulation for the CSSFU:

Xio1j = F(Xi—1j-1), j=1,2,...,m,

9)
where m denotes the number of CSSFUs in each CSSFB. We can
also iteratively obtain the output of the last CSSFU X;_1 1, :
Xi—t,m = Fy (Xic1,m—1)

= FFNC e Fy(Kie10) ).
Local residual learning (LRL) [8,18,19,21] is another manner to
stabilize model training. We also introduce LRL into our CSSFB

modules, so the final output of the ith CSSFB can be expressed
as:

(10)

Xi = Xi—1,0 + Xi—1,m. (11)

3.3. Serial Local Feature Fusion (SLFF)

In the CSN model [8], features transmitted to a channel split-
ting block are first split into two branches with different lo-
cal structures, which are then parallelly fused together with the
merge-and-run (MAR) mapping [20,29]. The proposed CSSFN also
splits features into several subfeatures. However, we do not trans-
mit local information in a multibranch way. Instead, subfeatures
are reintegrated into a single branch through convolutional and
concatenation operations, which can be viewed as partially dense
learning with channel splitting [30].

The input map of the jth CSSFU in the ith CSSFB is first
split into g subfeatures equally, i.e., {x?_ it oo el 1] 1}. Denote
11'11,171 as the output of the kth 3 x 3 conv layer in Fig. 3(b)

(cubes in dark gray), which is followed by a ReLU layer. Then we
have:

Z;‘—‘l,j 1_max{0 HC/q([xl 1,j-1° l 1] l])} (]2)
where k = 1,2,...,q and z0_ 1j-1 = 0. Therefore, all these
subfeatures are reintegrated together and the network is in a
single branch. Finally, we extend the channel of the last output
feature, 2?71,171' by a 3 x 3 channel extension layer at the end of
the CSSFU:

xio1j = H5(z1500). (13)

where X;_1; is the output of the jth CSSFU in the ith CSSFB.
It is worth noting that the purpose of channel splitting in this
work is not to form a multibranch structure but to be a pre-
processing step for serial fusion. The single-branch structure
makes the network deeper and narrower, also causing model
training to be more unstable. This is part of the reason why
we adopt DGFF to mitigate the training difficulty. Therefore,
channel splitting and serial fusion can be regarded as “stretch-
ing” a shallower but wider network into a deeper but narrower
one.

3.4. Network depth and parameters

Network depth is usually defined as the length of the longest
path from the input to the output [8,20]. According to the entire
structure of the proposed model, the depth of our CSSFN is given

by:
D=n[1+mx(q+1)]+s+86,

where s denotes the depth of the upscale modula and depends
on the specific value of upsampling factor r. Specifically, s = 1
forr =2 orr =3, and s = 2 for r = 4. The first “1” in Eq. (14)
corresponds to the compression layer at the beginning of each
CSSFB, and the second one denotes the extension layer at the end
of each CSSFU.

Table 1 exhibits the network depth (D) and parameters (P) of
our CSSFN under several configurations, where pseudo 3D execu-
tion implies that the model regards 96 slices of a 3D MR volume
as 96 channels of a 2D image. All models take approximately
10M~20M parameters. The most similar model to our CSSFN is
CSN [8], so we display the comparison of network configuration
between CSN [8] and CSSFN in Fig. 5. It can be observed that
CSSEN increases in network depth for both g 4 and q =
2. However, it has fewer parameters when g 4 and more
parameters when g = 2 than CSN [8].

(14)

4. Experimental results

In this section, we first introduce the datasets used in the ex-
periments and implementation details. Subsequently, we investi-
gate and analyze the influence of network components on model
performance, including GFF, LFF and the number of branches etc.
Finally, the proposed method is quantitatively and qualitatively
compared with other advanced SISR models, where the perfor-
mance on 2D images, pseudo 3D images, and in-vivo images is
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Fig. 5. Comparison of model depth and parameters between CSN [8] and CSSFN. For all settings, we set m = n = 4 and ¢ = 256. The symbols A and o represent

CSSFN with ¢ = 2 and q = 4 respectively, and ¢ denotes CSN [8] with 2 branches.

studied. The frequently used peak-signal-to-noise ratio (PSNR)
and structural similarity index metric (SSIM) [40] are chosen as
the metrics of quantitative evaluation.’

4.1. Datasets and implementation details

We employ the same MR datasets as in [8] to perform the
experiments. They are derived from the IXI? dataset and contain
the following three types of 3D brain MR volumes: T1-weighted,
T2-weighted and PD-weighted images. Each type of MR vol-
ume contains 500, 70 and 6 samples for model training, testing
and quick validation respectively. Two degradations, i.e., bicu-
bic downsampling (BD) and k-space truncation (TD), are imple-
mented to simulate LR images. For convenience, we follow the
convention of [8] to indicate a particular subset of data, i.e., the
subdataset with a specific type of MR images and degradation is
denoted as the dataset type (MR type, degradation type). The size
of each 3D volume is clipped to 240 x 240 x 96, where 96 is the
number of slices of a 3D volume. If the model takes a single slice
of a 3D volume as input, we call it common 2D execution; if the
model regards 96 slices as 96 channels of a 2D input, we term it
as pseudo 3D execution. Note that the model parameters vary
slightly with the number of input channels, as shown in Table 1.

The overall configuration of the proposed network is shown
Figs. 2 and 3 with ¢ = 256 and m = n = q = 4. The
size of the minibatch is set to 16. The kernel size of each conv
layer is marked in Figs. 2 and 3. For each convolution layer in
CSSFU, we keep the channel size of the output feature the same
as that of the subfeatures, i.e., c/q, except that the last channel
extension layer has ¢ output channels. For fair comparison, we
also train our model with LR image patches of size 24 x 24
with their corresponding HR patches. The training patches are
further augmented by random horizontal and vertical flips, and
90° rotations, as in [8,18,19,21]. All models are implemented in
TensorFlow 1.11.0 and trained on a NVIDIA GeForce GTX 1080 Ti
GPU for one million iterations. We apply Xavier's method [41] to
initialize model parameters. The Adam [42] optimizer is used to
minimize the L; loss with ; = 0.9, 8, = 0.999 and ¢ = 1078,
The learning rate is initialized as 10~ for all layers and halved
every 200k iterations.

1 The source code will be released soon.
2 http://brain-development.org/ixi-dataset/.

4.2. Feature fusion

In this section, we study the effects of GFF and BIF. To this
end, we designed several structures for ablation investigation. For
GFF, we compare DGFF (Fig. 2) and concat global feature fusion
(CGFF) [8,19]. For BIF, we compare our serial fusion (SF) strategy
and MAR mapping [29] (Fig. 4(b)). Note that the latter is a local
parallel fusion for multibranch structures. In addition, we also
constructed a benchmark structure without either GFF or BIF,
where the GFF is removed from the entire network and the part in
the dotted box in Fig. 4(c) is replaced with the basic Conv + ReLU
in Fig. 4(a). Table 2 shows the results of the comparison evaluated
on 7(T2, BD), for SRx2. As seen, the benchmark without channel
splitting (3rd column) achieves a PSNR of 39.90 dB, a relatively
good result. This is probably because the stage mapping in the
benchmark (refer to Fig. 4(a) and (c)) evolves into the residual
block of EDSR.3[18].

For convenience, we employ “0” and “1” to identify different
GFF and BIF strategies: 0 for the benchmark, GFF1 for CGFF, GFF2
for DGFF, BIF1 for MAR (Fig. 4(b)), and BIF2 for SF (Fig. 4(c)).
According to the 6th, 8th and 10th columns, we can observe
that MAR mapping degrades model performance seriously when
q = 4, which implies that one cannot improve the performance
by simply increasing the branches of CSN [8]. In contrast, the
proposed SF can boost model performance (7th, 9th and 11th
columns), compared with the benchmark (3rd column). Another
interesting finding is that CGFF performs significantly better than
DGFF without channel splitting (4th column vs. 5th column).
However, the situation is reversed with channel splitting (8th
column vs. 10th column). This phenomenon shows that the com-
bination of DGFF and SF can better promote the information flow
of the network, thus improving the SR performance.

We also visualize the convergence process of these models in
Fig. 6. It can be observed that these curves are consistent with the
results in Table 2. It is worth noting that although the curves for
GFFO_BIF2, GFF1_BIF2, and GFF2_BIF2 seem to be similar, collecting
the data points is very different. As SF greatly increases the network
scale, model training often collapses for SF and CGFF + SF, and we
need to detect training interruptions and restart training via extra
code. However, it rarely undergoes training crashes for DGFF +
SF. Therefore, we believe that the increase in model scale (depth

3 Nevertheless, the model is still trainable because m = n = 4 indicates that
the network parameters and depth are much smaller than those of the original
EDSR [18].
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Ablation study on GFF and BIF. All models (c = 256, m = n = q = 4) are trained on D(T2, BD) for one million iterations and tested on 7(T2, BD). The best and

second best results are marked in red and blue, respectively.

CFF CGFF X Vv X X X Vv J X X
DGFF X X N X X X X Vv J
BIF MAR X X X J X Vv X V4 X
SF X X X X 4 X Vv X 4
r=2 PSNR 39.90 39.95 39.88 39.66 40.01 39.66 40.03 39.68 40.05
- SSIM 98.67 98.68 98.66 98.62 98.69 98.61 98.69 98.63 98.70

Remark: GFF1 — CGFF; GFF2 — DGFF; BIF1 — MAR; BIF2 — SF; PSNR: (dB); SSIM: (%).

39 T T T T
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—— CSSFN_GFF2_BIF0
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x10°

iters

10
x10°

Fig. 6. Comparison of validation performance between different combinations of GFF and BIF. The PSNR curves are evaluated on V(T2, BD) with r = 2 and correspond

to the testing results in Table 2.

Table 3

The impact of the output width of serial fusion on model performance. All models are trained on D(PD, BD) for one million iterations.

The basic configuration is ¢ = 256 and m = n = 4 (PSNR|SSIM|P|D).

Co r q=2 q=4 qg=38 q=16
2 41.45]98.98|16.40|59 41.30/98.96/11.09|91 41.20/98.93]7.990|155 40.99|98.89(6.341|283
c/q 3 36.15197.11|19.35|59 36.00(97.03]14.04|91 35.83]|96.90|10.95|155 35.56(96.73]|9.294/283
4 33.71]95.20|18.76|60 33.59(95.09|13.45|92 33.38]|94.84/10.35|156 33.07|94.47|8.703|284
2 41.32|98.95|9.911|59 41.30|98.96/11.09|91 41.35|98.96|13.46|155 41.28|98.95/18.18|283
64 3 36.06/97.06|12.86|59 36.00(97.03]|14.04|91 36.02|97.04/16.41|155 35.99(97.01|21.13|283
4 33.57]95.06|12.27|60 33.59(95.09|13.45|92 33.59|95.06|15.82|156 33.59]95.08|20.54/|284

Remark: r - scaling factor; PSNR: (dB); SSIM: (%); P: (M); D: layers.

and parameters) aggravates instable training and that absorbing
DGFF helps to ease such training difficulty. Both the quantitative
results in Table 2 and the PSNR curves in Fig. 6 demonstrate
the effectiveness and benefits of our SF and its combination with
DGFF.

4.3. Channel splitting

In previous settings, the output width of serial fusion, c/q, will
be changed according to the number of subfeatures q. At the same
time, model parameter P decreases as q increases. However, if
we set the output channel of serial fusion to a fixed value, then
P increases with the increase of q. Denoting the output channel
of serial fusion as c,, we study the effects of q and ¢, on model
performance in this section. To this end, we train our CSSFN with
different configurations with D(PD, BD) and collect the results in
Table 3.

4.3.1. Unfixed output width

Unfixed output width implies ¢, = c/q, where c is fixed and
represents the channel number of input features to serial fusion.
It is a general consensus that increasing network depth D and
parameters P helps to improve the performance of SR models.
According to Table 3, we can see that D increases and P decreases
with the increase in ¢g. On the other hand, model performance
worsens as q increases. It seems that, in serial fusion, the impact
of model parameter P is more pronounced than that of network
depth D. However, the inference contradicts the channel splitting
that deceases P of the baseline. Hence, we further conduct the
following experiment with fixed q.

4.3.2. Fixed output width

We set ¢, 64 for comparison in this case. As shown in
Table 3, we cannot obtain a significant performance gain as q in-
creases. This strange phenomenon is puzzling because both P and
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Table 4
Quantitative comparison between different methods. The best values are marked in red and the second ones are marked in blue
(PSNR/SSIM).
Method r Bicubic downsampling 77(:, BD) k-space truncation 7(:, TD)

PD T1 T2 PD T1 T2
Bicubic x2 35.04/0.9664 33.80/0.9525 33.44/0.9589 34.65/0.9625 33.38/0.9460 33.06/0.9541
NLM [43] x2 37.26/0.9773 35.80/0.9685 35.58/0.9722 36.18/0.9707 34.71/0.9581 34.56/0.9641
SRCNN [11] x2 38.96/0.9836 37.12/0.9761 37.32/0.9796 38.23/0.9802 36.52/0.9705 37.04/0.9773
ESPCNN [16] x2 38.27/0.9814 36.91/0.9747 36.92/0.9773 37.88/0.9792 36.35/0.9693 36.79/0.9754
VDSR [14] x2 39.97/0.9861 37.67/0.9783 38.65/0.9836 39.89/0.9850 37.58/0.9760 38.74/0.9823
IDN [44] x2 40.27/0.9869 37.79/0.9787 39.09/0.9846 40.43/0.9862 37.79/0.9765 39.48/0.9842
RDN [19] X2 40.31/0.9870 37.95/0.9795 38.75/0.9838 40.39/0.9862 38.08/0.9784 40.02/0.9826
RecNet [39] x2 40.43/0.9873 37.86/0.9792 39.13/0.9848 40.10/0.9857 37.54/0.9764 39.03/0.9832
FSCWRN [34] x2 40.72/0.9880 37.98/0.9797 39.44/0.9855 40.91/0.9876 38.04/0.9786 39.82/0.9851
CSN [8] x2 41.28/0.9895 38.27/0.9810 39.71/0.9863 41.77/0.9897 38.62/0.9813 40.47/0.9868
CSSFN-B4 [Ours] X2 41.30/0.9896 38.33/0.9812 40.05/0.9870 41.91/0.9900 38.67/0.9815 40.64/0.9872
CSSFN-B2 [Ours] x2 41.45/0.9898 38.36/0.9813 40.10/0.9871 41.97/0.9902 38.76/0.9818 40.73/0.9874
Bicubic x3 31.20/0.9230 30.15/0.8900 29.80/0.9093 30.88/0.9167 29.79/0.8793 29.50/0.9016
NLM [43] x3 32.81/0.9436 31.74/0.9216 31.28/0.9330 32.02/0.9324 30.83/0.9027 30.57/0.9197
SRCNN [11] x3 33.60/0.9516 32.17/0.9276 32.20/0.9440 32.90/0.9432 31.72/0.9187 31.80/0.9381
ESPCNN [16] x3 33.52/0.9505 32.10/0.9242 32.13/0.9421 32.54/0.9417 31.52/0.9140 31.64/0.9353
VDSR [14] x3  3466/0.9599  3291/0.9378  33.47/0.9559  34.27/0.9555  32.57/0.9304  33.23/0.9515
IDN [44] x3 34.96/0.9619 33.06/0.9394 33.92/0.9591 34.88/0.9598 32.86/0.9348 33.95/0.9569
RDN [19] x3 35.08/0.9628 33.31/0.9430 33.91/0.9591 35.00/0.9609 33.33/0.9416 33.99/0.9576
RecNet [39] x3 34.96/0.9623 33.05/0.9399 33.85/0.9588 34.67/0.9590 32.80/0.9347 33.69/0.9554
FSCWRN [34] x3 35.37/0.9653 33.24/0.9423 34.27/0.9618 35.30/0.9636 33.09/0.9390 34.34/0.9603
CSN [8] x3 35.87/0.9693 33.53/0.9464 34.64/0.9647 36.09/0.9697 33.68/0.9464 34.95/0.9653
CSSFN-B4 [Ours] x3 35.99/0.9702 33.56/0.9468 34.84/0.9661 36.23/0.9706 33.73/0.9469 35.12/0.9663
CSSFN-B2 [Ours] x3 36.15/0.9711 33.59/0.9471 34.96/0.9668 36.32/0.9713 33.75/0.9472 35.23/0.9671
Bicubic x4 29.13/0.8799 28.28/0.8312 27.86/0.8611 28.82/0.8713 27.96/0.8182 27.60/0.8511
NLM [43] x4 30.27/0.9044 29.31/0.8655 28.85/0.8875 29.27/0.8906 28.68/0.8439 28.37/0.8718
SRCNN [11] x4 31.10/0.9181 29.90/0.8796 29.69/0.9052 30.52/0.9078 29.31/0.8616 29.32/0.8960
ESPCNN [16] x4 31.02/0.9169 29.77/0.8781 29.32/0.9022 30.22/0.9034 29.29/0.8618 29.28/0.8954
VDSR [14] x4 32.09/0.9311 30.57/0.8932 30.79/0.9240 31.69/0.9244 30.14/0.8818 30.51/0.9162
IDN [44] x4 32.47/0.9354 30.74/0.8966 31.37/0.9312 32.33/0.9318 30.40/0.8889 31.31/0.9270
RDN [19] x4 32.73/0.9387 31.05/0.9042 31.45/0.9324 32.64/0.9362 31.00/0.9018 31.49/0.9301
RecNet [39] x4 32.58/0.9378 30.86/0.9005 31.30/0.9310 32.16/0.9310 30.46/0.8900 31.03/0.9243
FSCWRN [34] x4 3291/0.9415  30.96/0.9022  31.71/0.9359  32.78/0.9387  30.79/0.8973  31.71/0.9334
CSN [8] x4 33.40/0.9486 31.23/0.9093 32.05/0.9413 33.51/0.9489 31.27/0.9092 32.28/0.9421
CSSFN-B4 [Ours] x4 33.60/0.9509 31.34/0.9102 32.27/0.9441 33.64/0.9501 31.35/0.9095 32.46/0.9440
CSSFN-B2 [Ours] x4 33.71/0.9520 31.37/0.9104 32.38/0.9453 33.75/0.9514 31.39/0.9098 32.57/0.9453

D become larger with the increase of g, but model performance is
not improved or even slightly decreased (e.g., SRx3). Therefore,
simply enlarging the number of subfeatures q in terms of channel
splitting cannot boost the performance, and we speculate that the
network is over/underfitted with the degradation of training samples.
In this case, channel splitting itself is helpful in mitigating model
over/underfitting. However, once channel splitting is performed,
a larger q will exacerbate the over/underfitting effect, resulting
in performance degradation. When c; is fixed, the adverse effect
caused by an increase in g counteracts the benefit of an increase
in model parameters P. This is why we cannot observe perfor-
mance gain in this case. Additionally, increasing q actually makes
it more difficult to integrate subfeatures effectively. Therefore,
channel splitting should not aggressively enlarge the number
of subfeatures unless there exists a more effective information
fusion mechanism.

4.4. Comparison with other methods

To illustrate the effectiveness and superiority of our CSSFN,
we compare it with several typical SISR methods in this section,
including the following:

a classic method for MR image upsampling: NLM [43];

two lightweight CNN models: SRCNN [11] and ESPCNN [16];
two moderate-scale CNN models: VDSR [14] and IDN [44];
two large-scale CNN models: RDN [19] and EDSR [18];

two CNN models specifically for MR images: FSCWRN [34],
CSN [8];

e a UNet-based model specifically for MR image recovery:
RecNet [39];

Some results are directly cited from [8] because of the same
implementation details and datasets, while others are obtained
by retraining the corresponding models with the datasets de-
scribed in 4.1. Note that we do not compare two recent works,
W2AMSN [35] and SERAN [36], since they use 32 x 32 LR patches
to train the models, while all the compared methods in this paper
adopt 24 x 24 LR image patches.

4.4.1. Bicubic Degradation (BD)

As one of the most common degradations for simulating LR
images, bicubic degradation simply utilizes a bicubic interpola-
tion kernel to shrink the image size in the spatial domain. Table 4
shows the quantitative results over the testing datasets of PD, T1
and T2 images for all scales, i.e., 7(:, BD). It can be seen that our
CSSEN surpasses CSN [8] and achieves the best performance on all
MR image types and scaling factors. In particular, CSSFN-B4 with
relatively few parameters also gives excellent performance on all
image types and scales.

Fig. 7 exhibits a visual comparison of these methods on PD,
T1 and T2 images with SRx4. We can see that most CNN-based
methods (e.g., VDSR [14] and RDN [19]) can surpass traditional
SR methods (bicubic and NLM [43]) by a large margin, achieving
good approximations to the ground truth. Although it is not easy
to observe the difference between our model and other CNN-
based methods on PD and T1 images, the proposed CSSFN is the
most accurate in quantitative evaluation. Besides, we can see that
the results of our CSSFN show sharper edges from the position
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Fig. 7. Visual comparison between several advanced SISR methods on a PD (top), T1 (middle) and T2 (bottom) image with r = 4. The image degradation is bicubic
degradation. The maximal PSNR (dB) and SSIM for each group of comparisons are in red and the second ones are in blue.

indicated by the red arrows marked on the T1 image, and the dark
trench between the two bright curves is also clearer than other
methods. A more significant visual difference can be observed on
the T2 image. The gap between the white and gray areas is more
obvious in the results of our model, but it can hardly be observed
in the results of other methods. In addition, the black spot in
the white area can be more clearly observed in the results of the
CSSFN.

4.4.2. Truncation Degradation (TD)

k-space truncation of HR images is a process to simulate
the real MR image acquisition where a LR image is scanned by
reducing acquisition lines in phase and encoding directions [8].
When the scaling factor remains the same, k-space truncation
often degrades the quality of HR images more radically than
bicubic downsampling due to the “steep” loss of k-space data.
This can be verified by the fact that bicubic interpolation performs
better than k-space truncation in bicubic downsampling (3rd and
6th columns of Table 4). Table 4 also presents the quantitative
results of the compared methods in terms of k-space truncation
degradation. Again, our CSSFN obtains better performance on all
image types and scaling factors. Interestingly, the performance of
CSSFN (or CSN [8]) is better than that of bicubic downsampling,
which may imply that the proposed CSSFN is more suitable for
MR image SR tasks.

Visually, we can observe the advantages of the proposed
method over other methods more easily. Fig. 8 shows the visual
effect of the compared methods on PD, T2 and T1 images withr =
4, r = 3 and r = 4, respectively. The proposed model recovers

images with clearer and sharper edges, thus making them more
faithful to the ground truth HR images. In this case (TD), the
visual advantage of our CSSFN is more observable. For instance, it
displays clearer contours and details at the locations indicated by
the red arrows in the PD and T2 images. In particular, CSSFN-B2
has more obvious advantages and is closer to the ground truth.
In the T1 image, the superiority of our CSSFN is more significant.
The dark trench that can be clearly identified in the results of our
model, can hardly be marked in the results of other methods.

4.4.3. Pseudo 3D execution

One of the major problems in training large-scale models
with MR images is the degradation of training samples. This
problem can be alleviated by pseudo 3D execution at the cost of
appropriate drop in accuracy [8]. We also conduct experiments
with pseudo 3D case to make the comparison more comprehen-
sive and thorough. Note that we do not include some models
because the reduction of training samples makes the training of
most other models fail. Table 5 shows the quantitative results of
EDSR [18], CSN [8], CSSFN-B4 and CSSFN-B2 in this case, with
both degradations. The performance gain of the proposed CSSFN
is obvious. However, the advantage of CSSFN-B2 over CSSFN-
B4 seems to be weakened when compared with common 2D
execution, such as 7(PD, BD) with r = 4 and 7(T1, TD) with
r = 3. This is mainly due to the over/underfitting caused by the
reduction in training samples, as shown in Fig. 9. It can be seen
that CSSFN-B2 essentially performs better than CSSFN-B4 in that
it converges faster and has higher PSNR maxima. Besides, CSN [8]
alone does not show obvious over/underfitting in all cases. To
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Fig. 8. Visual comparison between several state-of-the-art SISR methods on a PD (top), T2 (middle) and T1 (bottom) image with r = 4, r = 3 and r = 4, respectively.
The image degradation is truncation degradation. The maximal PSNR (dB) and SSIM for each group of comparisons are in red, and the second ones are in blue.

Table 5
Quantitative comparison in case of pseudo 3D execution. The maximal PSNR (dB) and SSIM of each comparative group are marked in red, and the second ones are
in blue.
r Bicubic downsampling 77(:, BD) k-space truncation 7(:, TD))
EDSR CSN CSSFN CSSFN EDSR CSN CSSEN CSSFN
[18] [8] (g=4) (g=2) [18] [8] (g=4) (g=2)
x2 39.87/0.9857 40.15/0.9865 40.28/0.9869 40.34/0.9871 39.47/0.9837 39.50/0.9839 39.80/0.9849 39.91/0.9853
PD %3 34.39/0.9578 34.68/0.9598 34.78/0.9609 34.76/0.9611 33.97/0.9531 34.12/0.9540 34.24/0.9554 34.15/0.9550
x4 31.80/0.9284 32.19/0.9325 32.21/0.9332 32.11/0.9329 31.44/0.9219 31.72/0.9246 31.78/0.9252 31.68/0.9257
x2 37.56/0.9774 37.60/0.9778 37.74/0.9786 37.81/0.9789 37.09/0.9741 36.99/0.9737 37.18/0.9748 37.25/0.9754
T1 x3 32.76/0.9347 32.83/0.9360 32.86/0.9362 32.85/0.9366 32.27/0.9274 32.25/0.9266 32.34/0.9276 32.32/0.9275
x4 30.46/0.8902 30.53/0.8915 30.58/0.8919 30.61/0.8923 30.04/0.8803 30.07/0.8794 30.09/0.8795 30.14/0.8812
x2 38.28/0.9824 38.53/0.9831 38.79/0.9836 38.92/0.9842 38.11/0.9803 38.20/0.9807 38.54/0.9817 38.92/0.9842
T2 %3 33.15/0.9528 33.36/0.9547 33.46/0.9556 33.50/0.9559 32.89/0.9482 33.00/0.9490 33.21/0.9512 33.26/0.9518
x4 30.52/0.9198 30.81/0.9231 30.93/0.9242 30.89/0.9241 30.31/0.9137 30.54/0.9163 30.62/0.9182 30.58/0.9178

this end, the increase in model scale tends to cause the fitting
problem when trained with degraded samples, which is not easy
to observe through CSN [8]. Fig. 10 presents the visual comparison
between these methods in terms of the pseudo 3D case, from
which we can also see that our CSSEN provides a clearer indi-
cation of underlying structures, compared with other methods.
Despite the over/underfitting effects, our CSSFNs still outperform
EDSR [18] and CSN [8], indicating their excellent structure design
and powerful representational capacity, especially in the presence
of degraded training samples.

4.4.4. Performance on in-vivo images
We also conducted SR experiments on two in-vivo T1 images
collected from Alltech Medical Systems Co., LTD. In this case, the
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ground truth is not available and image degradation is not known
either. We compare our CSSFN-B4 with NLM [43], SRCNN [11],
VDSR [14], RDN [19], FSCWRN [34], and CSN [8] etc. As shown
in Fig. 11, our CSSFN-B4 recovers sharper edges and finer details
than other state-of-the-art methods, as indicated by the arrows.

5. Discussion
5.1. Channel discrimination capacity

In CSN [8], channel discrimination capacity is achieved by
different branch structures. The hierarchical features are divided
into 2 parts by channel splitting and fused together by merge-
and-run mapping [29]. The propagation paths of subfeatures have
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Fig. 9. Validation performance comparison of the compared methods on several randomly selected subdatasets in the case of pseudo 3D execution. It can be
observed that the severity of model performance degradation due to over/underfitting: (a) < (b) < (c) < (d).

AF 9F 9
F. Y W . WY W\

Bicubic EDSR CSN CSSFN-B4 CSSFN-B2 Ground Truth
32.04/0.9258 35.53/0.9630 35.62/0.9634 35.75/0.9648 35.67/0.9644 PSNR/SSIM

Bicubic EDSR CSN CSSFN-B4 CSSFN-B2 Ground Truth
27.63/0.8541 30.66/0.9223  30.89/0.9254 30.94/0.9267 31.02/0.9276  PSNR/SSIM

Fig. 10. Visual comparison of pseudo 3D execution on a PD (top) and a T2 (bottom) image with r = 3 and r = 4, respectively. Image degradation is TD.
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\ . 5 v \
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Fig. 11. Visual comparison between several state-of-the-art SISR methods on in-vivo T1 MR images with r = 4. In this case, the ground truth HR images are not

available.

different structures. In the proposed CSSFN, the subfeatures are
also processed discriminatorily in that they are located at dif-
ferent depths of the network; although, they are placed in a
single branch. This can be regarded as a fine-grained hierarchy of
intermediate features, thus realizing a partial continuous memory
mechanism [19], which is believed to be beneficial to feedback
propagation [38]. In this regard, it makes subfeature fusion of
channel splitting more effective. On the other hand, network
depth is crucially important for the representational capacity of
deep models [45,46]. The SLFF in our CSSFN significantly increases
the network depth of CSN [8], which is one of the main reasons
that it can achieve better performance.

From Table 3, we can see that model performance degrades
with the increase of subfeatures (q) when ¢, = c/q. However,
the increase in model parameter P leads to no performance gain
when ¢, remains fixed at 64. As discussed earlier, in addition
to the over/underfitting, the difficulty of information fusion may
also impede the capacity of channel discrimination. If more effec-
tive mechanisms for information fusion are explored, it is possible
to achieve a better trade-off between network performance and
scale.

5.2. Feature integration

Network structure design for deep models is very important
for the high-level representation of data and the final perfor-
mance of the task. In the context of channel splitting, it is crucial
to find an effective subfeature integration strategy to promote the
trade-off between the performance and efficiency of MR image
SR. Due to the degradation of training samples, the basic principle
is to improve the representational ability of the network while
keeping it trainable. Possible options include (1) an attention
mechanism, (2) diverse multiscale features, and (3) further sim-
plification of operations between subfeatures, such as element-
wise summation or 1 x 1 conv. However, these possible strategies
mainly rely on the professional knowledge and experience of
researchers, and it is difficult for people to alter their origi-
nal thinking paradigm and present an optimal choice. Another
promising idea may be the methods based on neural architecture
search (NAS) [47,48], which can be used to automatically search
the optimal design.

5.3. Image degradation model
We also investigate two degradations as in [8], i.e., bicubic

downsampling and k-space truncation. Truncation degradation is
considered more aggressive because the information outside the
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sampling range is “steeply” cut off without any cushion, as shown
in Fig. 14. As mentioned earlier, it can be verified by the fact that
bicubic interpolation performs better in bicubic downsampling
than in k-space truncation. However, in Table 4, the perfor-
mance gain of some models (e.g., CSN [8] and CSSFN) is contrary
to that of bicubic interpolation. On the other hand, truncation
degradation simulates real MRI acquisition, which operates in k-
space and truncates the frequency spectrum of imaging objects
or scenes. This indicates that these models may be more suitable
for the scenarios of MR image SR due to stronger representational
capacity.

5.4. Limitations

The proposed CSSFN may fail to recover the underlying struc-
ture correctly when the MR image to be super-resolved contains
complex textures. As shown in Fig. 12, a T2 image is SR x
3 magnified under TD. Although our CSSFNs present the best
quantitative and qualitative results, it, like the other compared
methods, fails to recover the correct structure indicated by the
red circles. The possible reasons for the failure case are threefold.
First, the most important reason may be that the degradation of
MR samples limits the representational capacity of deep models.
Second, we use 24 x 24 LR image patches to train the models,
which is too small to capture adequate global features. Finally,
complex textures may need more support from global features,
whereas our model focuses on local features without nonlocal
attention. Consequently, unpleasant results are shown in these
challenging situations.

5.5. Efficiency compromise

To demonstrate the efficiency superiority of our CSSFNs to
other compared models, especially CSN [8], we introduce Mul-
tiAdds [49] as another quantitative evaluation index. For conv
layers, MultiAdds [49] is computed as follows:

MultiAdds = k x k x Cip X Cour X H x W (15)

where k is the size of the conv kernel, G, and C,,; are the input
and output channels of this layer, and H and W denote the
spatial size of output features. For fair comparison, we follow the
convention of [49] and assume the size of HR images to be 720p
(1280 x 720). Fig. 13 shows the compromise study of PSNR vs.
MultiAdds (Giga). It can be observed that CSSFN-B2 consumes the
most MultiAdds to achieve the best performance for all scales,
but CSSFN-B4 always provides better trade-off between PSNR
and MultiAdds than the CSN [8]. More specifically, our CSSFN-B4
consistently achieves higher PSNR values than the CSN [8] with
less computational overhead.
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Bicubic NLM [65] SRCNN [22] VDSR [26] IDN [32] RDN [31]
30.25/0.8963  31.23/0.9162  32.10/0.9314  33.59/0.9485  34.31/0.9549  34.35/0.9558
T2 Image RecNet [33] FSCWRN [17] CSN [ CSSFN-B4 CSSFN-B2 Ground Truth
SRX3 34.04/0.9532  34.69/0.9587  35. 26/0 9640 35.42/0.9652  35.52/0.9660  PSNR/SSIM

Fig. 12. Failure case for super-resolution (SRx3) on a T2 slice. The image degradation is truncation degradation. The maximal PSNR (dB) and SSIM for each group

of comparisons are in red and the second ones are in blue.
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Fig. 13. Efficiency analysis on computational complexity of compared models. We follow the convention of [49] and assume the size of HR images to be 720p

(1280 x 720) to calculate MultiAdds. The data are collected on 7(PD, BD).
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Fig. 14. Comparison between bicubic downsampling and k-space truncation in the

domain corresponds to a sinc function in the spatial domain (1D).

6. Conclusion

Channel discrimination is an effective manner to improve the
performance of deep SR models in the context of degradation
of training samples, and channel splitting is a simple and direct
implementation for dealing with feature channels discrimina-
tively. However, further study is needed on the integration of the
subfeatures produced by channel splitting and ease model fitting
problems. In this work, we demonstrate a serial fusion strategy
for channel splitting. Hierarchical features are first divided into
multiple subfeatures along the channel direction and then inte-
grated into a single branch in a serial way. These subfeatures also
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spatial domain (a) and frequency domain (b). The truncation in the frequency

assign the model channel discrimination capacity in that each
subfeature is located at different network depths. To improve
the information flow through the network and avoid training
instability, we combine a serial fusion strategy with DGFF to
fuse intermediate features. Extensive experiments demonstrate
the superiority of our CSSFN to other advanced SISR methods.
Additionally, serial fusion might shed some light on other feature
fusion and channel discrimination methods. In the future, we
would like to develop more effective strategies for deep feature
fusion and lightweight SR models, improving the compromise
between the performance and resource consumption.
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