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Abstract
Gibbs-ringing is a common artifact in magnetic resonance imaging (MRI), which is mainly
caused by the finite k-space sampling and the truncation of high frequency (HF) information
at the sampling border. It is especially visible for imaging acquisitions at low resolution and
can be typically suppressed by filtering at the expense of further loss of HF components.
As a classic image restoration problem in MRI, Gibbs-ringing artifact suppression can be
viewed as a typical ill-posed inverse problem of image generation in computer vision com-
munity, such as image super-resolution and inpainting. Inspired by this, the present work
presents a novel method to suppress the Gibbs-ringing artifacts with knowledge transfer
from natural images to MR images. The highly nonlinear relation between the artifact-
degraded image and the corresponding artifact-free counterpart is modeled with a typical
convolutional neural network (CNN), which is first trained with natural images and then
fine-tuned with MR images. Unlike many other works, we use transfer learning between
different types of images to deal with regression problems, rather than classification prob-
lems. The experimental results exhibit that there exists information sharing between natural
images and MR images with regard to the same problem, and the knowledge learned from
natural images can indeed improve the performance of regression models on MR images.

Keywords Convolutional neural networks · Gibbs-ringing artifacts · Knowledge transfer ·
Magnetic resonance imaging

1 Introduction

Magnetic resonance imaging (MRI) is a primary medical imaging technique based on the
physical principles of nuclear magnetic resonance and mainly used to produce high qual-
ity images for both clinical diagnosis and research purposes. In the commonly applied
two-dimensional Discrete Fourier Transform (2D DFT)-based MR imaging methods, the
reconstructed MR images are usually affected by Gibbs-ringing artifacts, which manifest
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(a) Rectangle function (b) Fourier transform (c) Frequency truncation (d) Inverse recovery

Fig. 1 Gibbs-ringing artifacts generated by the truncation of HF information on a 1D continuous rectan-
gle function. It can be seen that there are conspicuous parasitic oscillations in the vicinity of the jump
discontinuity

themselves as spurious oscillations (Fig. 1) in the vicinity of high frequency (HF) region,
e.g., edges and ridges at tissue boundaries [24]. In practice, these oscillatory artifacts could
seriously degrade the quality of images and mislead clinical diagnosis.

In the conventional case, a 2D DFT of the finitely measured k-space data is performed
to reconstruct a MR image. This strategy implicitly assumes that the Fourier transform
is zero everywhere outside the sampled region. Theoretically, it corresponds to a multi-
plication of the true object’s Fourier transform with a rectangle function (in case of 2D
Cartesian sampling), which results in a convolution of the true object with a sinc function
in the image space [6, 24]. Therefore, Gibbs-ringing is also known as truncation artifact
and it usually appears as oscillating overshoots of the pixel intensity near the discontinu-
ities in the image (Figs. 1 and 2). The problem may be alleviated by expanding sampling
region or increasing the sampling density (i.e., high resolution sampling). However, this
will inevitably increase the imaging time and cost. Some practical applications still use rel-
atively low-resolution acquisitions in at least one dimension for fast imaging, thus suffering
from respective artifacts [6].

Deep learning techniques [30], especially convolutional neural networks (CNNs), have
rapidly become a preferred choice for analyzing and understanding digital images [36].
One consensus is that the deeper network is more difficult to be well-trained because the
information is gradually weakened as the network deepens [22, 58]. This problem is even
more serious for medical images due to the degradation of training examples [60]. To this
end, we proposed a novel method based on deep CNNs and knowledge transfer to relieve the
problem of training deep networks with degraded training samples. The proposed method
uses the knowledge learned from natural images to guide the training of models using MR
images. Unlike many other methods that use knowledge transfer from natural images to

(a) Artifact-free image (b) Fourier transform (c) Frequency truncation (d) Inverse recovery

Fig. 2 Gibbs-ringing artifact generation in common 2D images. It is worth noting that besides the ringing
artifacts, the significant blurring effect can also be observed in (d), indicating the loss of HF information
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Fig. 3 The overall network structure used in this work (modified EDSR model [35]). It contains three typical
phases: feature extraction, nonlinear mapping and image reconstruction. The nonlinear mapping is mainly
achieved by a series of stacked residual blocks. The structure of a residual block is detailed by the lth block

medical images in classification problems, the proposed method applies it to the regression
problem of dense prediction.

We construct an end-to-end model based on the EDSR model [35], which was originally
designed for single (natural) image super-resolution (SISR). However, medical images are
relatively simple in image structures and texture details compared with natural images (NI).
This will lead to instability in model training, especially when training large scale networks
[60]. Thus, we modified the original EDSR model by: (i) introducing an external skip con-
nection (ESC) to stabilize model training; (2) reducing the scale of model parameters by
limiting network width (the number of feature maps); (3) removing the upscale module to
keep the size of the input and output the same, as shown in Fig. 3. The model is largely down-
scaled and termed as Gibbs-ringing Artifact Suppression Convolutional Neural Network
(GAS-CNN).

To generate training examples, we follow the pipeline shown in Fig. 2 to simulate Gibbs-
ringing artifacts (4-fold truncation in k-space), where Fig. 2a and d form a pair of training
sample (y, x). It is worth noting that the artifact-degraded image x is generated by zero-
padding the k-space to match the size of the artifact-free image y. However, the artifacts
may appear in the images produced with or without zero-padding in real MRI scans. Zero-
padding just makes the Gibbs-ringing artifacts more visible because the oscillation pattern
of the artifacts is amplified by the zero-filling (i.e., sinc) interpolation [24]. In this work,
we set the problem to the case of zero-padding1 so that the artifacts in degraded images are
more visible.

In summary, we present a new method for Gibbs-ringing artifact removal based on
current popular deep learning and transfer learning techniques. Extensive experiments
on various MR images, including proton density (PD), T1 and T2 images, verify the
effectiveness of the proposed GAS-CNN model in suppressing Gibbs-ringing artifacts.
More importantly, we experimentally verify that knowledge learned from natural images
can indeed improve the performance of deep regression models on medical images. The
remainder of this paper is organized as follows. In Section 2, we present some previous con-
tributions related to this work. Next, the proposed method is detailed in Section 3 and the
experimental results are presented in Section 4. We discuss some related issues and future
work in Section 5. Finally, we conclude the whole work in Section 6.

1In the case of non-zero padding, the current problem is more like the task of SISR with the image degradation
of k-space truncation.
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2 Related work

2.1 Gibbs-ringing artifact suppression in MRI

Many approaches have been proposed in medical image processing community to reduce the
disturbances caused by Gibbs-ringing artifacts [2, 6, 9, 24, 29, 34, 51, 56]. One of the most
direct methods is image filtering, e.g., sigma or median filtering [9], Lanczos-σ approxima-
tion [17] etc. In the majority of MRI applications, these simple filters are routinely employed
although many methods have been proposed [6]. However, filtering typically leads to blur-
ring and significant reduction of HF details. More advanced methods have been proposed
based on piecewise reconstruction of smooth regions using Gegenbauer polynomials [2,
17, 18]. One main drawback of these methods is the requirement for edge detection. How-
ever, it is a challenging task in itself, to detect edges accurately in artifact-degraded images.
Besides, such methods are unstable in some applications due to parameter selection [7, 24].
Data extrapolation constrained with total variation (TV) regularization is another represen-
tative method [6, 40, 42]. Although these methods achieved better performance than filtering
methods, they are extremely time-consuming due to the usage of iterative optimization
techniques, e.g., conjugate gradient descent [6] and Euler’s integration [40, 42].

2.2 Convolutional neural networks

Deep convolutional neural network (CNN) is a feed-forward artificial neural networks
(ANNs) which can date back to the end of the 1980s [31]. In recent years, due to its tremen-
dous success in computer vision community (such as image classification [20, 28, 47, 54,
57], object detection [38, 48], face recognition [45, 46], image super-resolution [12, 26,
35, 44, 59], image denoising [8, 23, 55], image retrieval [61–63] and image inpainting [4,
5] etc.), it has shown an explosive popularity in various industrial and research fields. The
unprecedented success of CNNs arises mostly from the following factors [43]:

� Advanced high performance computing equipment (e.g. CPUs, GPUs and recent TPUs);
� The availability of large-scale high quality datasets (e.g. ImageNet [41], DIV2K [1] etc.);
� The development of related theories and techniques [36].

The proposed Gibbs-ringing artifact suppression approach also benefits from these advances
to a large extent due to its essence of deep CNNs and transfer learning.

2.3 Knowledge transfer

Many machine learning algorithms assume that training data and testing data have the same
feature space and probability distribution implicitly. However, this assumption may not hold
in many real-world applications [10, 11, 32, 33]. In these cases, knowledge transfer may be
an alternative way to improve model performance on the target task based on knowledge of
the source task [39]. Many medical image processing applications use knowledge transfer
to solve target tasks, e.g., a pre-trained model of Google’s Inception v3 was fine-tuned on
medical images [14, 19] and achieved the performance close to human experts [36]. How-
ever, these works are aimed at classification problems, not regression problems. An example
of knowledge transfer in regression problems is presented in [35], which investigated the
knowledge transfer between different scales of image super-resolution. In this work, we
transfer knowledge from natural images to MR images to deal with the regression task of
Gibbs-ringing artifact suppression.
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Fig. 4 The structure of a residual block proposed in [35]. It has two conv layers with a ReLU operation in
the middle. We elaborate on this residual block structure in more detail

3 Proposedmethod

In principle, Gibbs artifact suppression can be viewed as an image generation problem
where obstructing factors in the original images (Gibbs-ringing artifacts here) are required
to be removed or suppressed to improve image quality. Formally, an artifact-free image
y ∈ R

N×M is recovered from one single artifact-degraded image x ∈ R
N×M , where M and

N represent the height and width of the images, respectively. With the absence of noise and
other artifacts, it can be formulated as:

y = x + z (1)

in the image space. z = y − x represents the compensation for Gibbs-ringing artifacts. Let
X, Y, and Z ∈ C

N×M be the Fourier transform of x, y and z respectively. Then (1) can be
expressed equivalently in the k-space as follow:

Y = X+Z =⇒ Y = X ∪ Z (2)

where ∪ indicates union or merging operation.2 The target here is to recovery y from x
by predicting the appropriate artifact compensation z. Because there exist many nonlinear
features in natural or medical images (like edge, ridge and texture etc.) and an artifact-
degraded image corresponds to many possible artifact-free images, this is a highly nonlinear
ill-posed inverse problem analogous to single image super resolution (SISR) [12, 13, 15,
22, 25, 26, 35, 44, 49, 50] or image inpainting [4, 5] in computer vision community.

3.1 The overall network architecture

Although the network used in this paper is derived from the EDSR model [35], we still
illustrate it in details due to the structural changes described above. The overall structure of
the network is shown in Fig. 3. Like many other deep learning models, it consists of three
typical parts: feature extraction subnet (FE), nonlinear mapping subnet (NM) and image
recovery subnet (IR). There is only one convolutional layer in both FEN and IRN, while
NMN is composed of multiple residual blocks, which are the same as the residual blocks
of EDSR model [35]. Specifically, it consists of two conv layers with a ReLU layer in the
middle (Figs. 3 and 4).

2We also utilize the symbol “∪” to emphasize the complementary relationship between X, Y and Z.



Multimedia Tools and Applications

3.1.1 Feature extraction

This part of the network contains only one conv layer, which is equivalent to densely extract
patches and then represent them by a set of pre-trained bases, e.g., PCA, DCT and Haar etc
[12]. Formally, it can be represented as:

x0 = x ∗ w0 + b0 (3)

where x denotes the artifact-degraded input image, and x0 is the output of FE. w0 and b0 are
the filters and biases of this layer respectively, and “∗” represents the convolution operation.
Although the FE follows the structure of most previous models (e.g. [12, 13, 22, 35]) and
consists of only one conv layer, it can be designed arbitrarily, e.g., [26] and [59] use two
conv layers in FE, while [25] does not explicitly use FE and maps the input images to the
output image directly.

3.1.2 Nonlinear mapping

The residual networks that stack multiple building blocks of the same shape are modularized
[21]. This mainly refers to that the nonlinear mapping stage of the model is modularized.
Our NM is also composed of many stacked residual blocks, but they have the same struc-
ture as EDSR [35] instead of the original one in [20]. Let F l

res(·) denote the function that
corresponds to the lth residual block, then the output of a residual block is given by:

xl = F l
res(xl−1), l = 1, 2, . . . , L (4)

where L is the total number of residual blocks. Each residual block has a residual path
and a shortcut connection within it. Here, the residual path is composed of two conv layers
and one ReLU operation, and the shortcut connection is a identity mapping, as shown in
Fig. 4. Let F(xl−1,Wl ) represent the function corresponding to the residual path, where
Wl = {(w1

l , b1
l ), (w

2
l , b2

l )} is the parameter set of the lth residual block (the superscripts
are the indexes of the conv layers). Thus (4) can be rewritten as:

xl = xl−1 + F(xl−1,Wl ), l = 1, 2, . . . , L (5)

F(xl−1,Wl ) = [
max(xl−1 ∗ w1

l + b1
l , 0)

] ∗ w2
l + b2

l (6)

Iteratively, we have (i.e. xl+1 = xl +F(xl ,Wl+1) = xl−1 +F(xl−1,Wl )+F(xl ,Wl+1) =
· · · ):

xN = xn +
N−1∑

i=n

F(xi ,Wi+1), 0 � n < N � L (7)

In a residual block, (7) always hold if there is no additional operation after the addition and
the shortcut connection is a identical mapping [21]. It exhibits some very nice properties
that are helpful for forward and backward propagation. This is usually beneficial for low-
level computer vision problems. At the end of the NM part, there is another conv layer that
is used to collect the final nonlinear features from all the preceding residual blocks:

xL+1 = xL ∗ wL+1 + bL+1 (8)

Finally, a global skip connection (GSC) between NM’s input x0 and xL+1 is used to further
stabilize model training. The final output of the whole NM is as follows:

xL+2 = xL+1 + x0 (9)
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3.1.3 Image reconstruction

The artifact-degraded image x and the clean image y are of the same size in our settings
(zero-padding). Therefore, a single conv layer is simply applied to produce the estimated
image (see Fig. 3). The output of this final conv layer is:

xL+3 = xL+2 ∗ wL+3 + bL+3 (10)

Besides, we set an external skip connection (ESC) between the input of the model and xL+3,
which means that the whole model learns the residual between x and y. Thus, the final
output of our network can be represented as:

y = xL+4 = xL+3 + x (11)

It is worth noting that the model training becomes gradually unstable as the network depth
increases. The ESC can also stabilize model training and improve the performance of the
model slightly, just like constant scaling [35].

3.2 Model training

3.2.1 Optimization objective

Given a training dataset D = {
x(i), y(i)

}T

i=1, where T is the total number of the dataset, the
target of learning an end-to-end mapping f that predicts ŷ = f (x; θ) is to decide the model
parameters θ , where ŷ is an estimate of the artifacts-free image y. This is achieved through
minimizing the L1 loss between ŷ and y:

L(θ) = 1

T

T∑

i=1

‖f (x(i); θ) − y(i)‖1 (12)

Despite that minimizing L2 is generally preferred since it maximizes peak signal to noise
ratio (PSNR), L1 loss provides better convergence during model training [35]. This is espe-
cially helpful in the case of training the model with MR images due to the degradation of
training samples [60].

3.2.2 Multilevel residual mechanism

In general, the artifact-degraded images and their clear counterparts share same information
to a large extent. This indicates that a large part of the topological structures of their mani-
folds in high dimensional space are similar to each other. Therefore, it is more advantageous
to explicitly learning the residual image, instead of the original image [25].

Because the structure of MR training samples is much simpler than that of natural images
and the number of the model parameters is relatively large (about 2.7M), we use the mul-
tilevel residual mechanism to further stabilize the model training. As shown in Fig. 3, in
addition to the stacked residual blocks and GSC, we also add an ESC between the outermost
layers to enforce the model learn the residual between x and y. Our experiments confirm
the effect of this multilevel residual mechanism on the stabilization and the convergence of
the model training.
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3.2.3 Knowledge transfer

In this work, we not only study training the network directly using MR images, but also the
effect of knowledge transfer from natural images to MR images. Concretely, given a natural

image dataset DN = {
x(i), y(i)

}TN

i=1 and a MR image dataset DM = {
x(j), y(j)

}TM

j=1, we first
train the model using DN with respect to:

θ̂ = arg min
θ

1

TN

TN∑

i=1

‖f
(
x(i); θ

)
− y(i)‖1, θ0 ∼ N

(
μ, σ 2

)
(13)

where θ0 is the initial value of model parameters, and θ̂ denotes the final value obtained by
training the model using natural image dataset DN . N (μ, σ 2) is a normal distribution with
mean μ and standard deviation σ . After the model converges, we retrain it using the second
dataset DM with model parameters initialized by θ̂ , that is,

θ̃ = arg min
θ

1

TM

TM∑

j=1

‖f (x(j); θ) − y(j)‖1, θ0 = θ̂ (14)

where θ̃ represents the final model parameters. This process is termed as knowledge trans-
fer of parameters [39] that implicitly assumes that individual models for related tasks
(Gibbs-ringing artifact suppression over natural images and MR images here) should share
some parameters or prior distributions of hyperparameters. We experimentally show that the
assumption is actually effective.

4 Experiments

In this section, the generation of training datasets and the related model configuration are
firstly introduced. Then, the impact of ESC on model training and performance is studied
and knowledge transferred from natural images to MR images is evaluated in different train-
ing settings. Finally, the superiority of the proposed model is demonstrated by comparing
with other conventional methods both quantitatively and qualitatively. We adopt PSNR and
SSIM [52] as quantitative evaluation indexes.

4.1 Data generation

To boost the performance of the proposed model for Gibbs-ringing artifact suppression,
we prepared two datasets with natural images and MR images respectively. The detailed
information of the datasets is outlined in Table 1.

Table 1 The generated datasets
used for Evaluation experiments.
Note the validation sets are small
for quick validation. | · | denotes
the size of the corresponding
dataset

Training Validation Testing

MRI DM VM TM

|DM | = 10535 |VM | = 10 |TM | = 2633

NI DN VN TN

|DN | = 600 |VN | = 10 |TN | = 175
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4.1.1 NI dataset

The training set of DIV2K [1] dataset is applied to generate NI dataset. To make the sam-
pling range of training samples relatively concentrated, we exclude the images that have
more than 2K pixels in both horizontal and vertical directions. This leads to 785 images left.
These images are then converted to grayscale and resized to 512 × 512. Lastly, 600 images
are used to construct training set, and 175 images are included in testing set and the rest 10
images are used for quick validation.

We follow the process shown in Fig. 2 to simulate the ringing artifacts for both natural
and MR images. All the degraded images are produced by 4-fold truncation in k-space so
that the image degradation is relatively serious. Therefore, the network recovers the artifact-
free image from only 1/16 of the total information.

4.1.2 MRI dataset

The IXI dataset3 is used to construct MR dataset. It contains 581 T1, 578 T2 and 578 PD
volumes. Firstly, we take the intersection of these subsets according to imaging subjects and
obtain 577 volumes. By the default order, the first 400 volumes and the next 100 volumes
are used for generating training set and testing set respectively, and the rest is used for
producing validation data. To reduce the redundancy and preserve the example diversity,
25 slices at both ends of the slice-selection direction are discarded and one slice at the
interlaced interval of 10 slices is extracted to generate 2D samples. Finally, we obtain 10535
training slices and 2633 testing slices. Only 10 randomly selected MR slices are used for
quick validation.

4.2 Training setting

In our settings, the artifact-degraded image x is 4-fold truncated and zero-padded in k-space
so that it has the same size as the output image ŷ. All training images are split into sub
images of size 48 × 48 before feeding into the model. This is achieved by random extrac-
tion of paired artifact-degraded and artifact-free image patches. The data augmentation is
realized by random horizontal flips and 90◦ rotations.

The number of residual blocks and feature maps is set to 32 and 64 respectively, and
kernel size is 3 × 3 for all conv layers. The proposed models are implemented and trained
in TensorFlow 1.7.0, and the Adam optimizer [27] is used to minimize the loss function by
setting β1 = 0.9, β2 = 0.999 and ε = 10−8. Batch size is set to 16. We use piecewise
constant decay for learning rate, i.e., it is initialized as 10−4 for all layers and halved at every
2 × 105 iterations. All models are trained for one million iterations. The Xavier’s method
[16] is used to initialize network parameters when the model is trained from scratch.

4.3 External skip connection

We denote REF-CNN as the network with the same structure as GAS-CNN except that
it does not have a ESC. Both REF-CNN and GAS-CNN are trained with DN and DM .
The training dataset is attached to model name to indicate which dataset is used to train
the model, e.g., REF-CNN (DN ) indicates the model without ESC is trained with DN and
GAS-CNN (DM ) refers to the proposed model trained with DM .

3http://brain-development.org/ixi-dataset/

http://brain-development.org/ixi-dataset/
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Fig. 5 The external skip connection (ESC) enables the model to learn the residual z between the original input
and the corresponding label, which is considered to have a simpler manifold structure in high-dimensional
space [3]. However, the reference network (REF-CNN) directly learns to approximate the ground truth

4.3.1 What the models learn

Figure 5 presents the difference in what REF-CNN and GAS-CNN have learned, where
Fig. 5d is normalized for visualization purpose). As can be seen, REF-CNN tends to learn y
directly while GAS-CNN learns the residual of the ground truth and the input image x, i.e.,
y − x. The residual y − x has been considered to have a simpler manifold structure, thus
relieving the representational burden of the model [3]. Therefore, manifold simplification
is helpful to improve the performance of the model with certain representational capacity.
This is still an open question that may explain why residual learning [20, 21] works.

4.3.2 Training efficiency and stability

Since ESC connects the input and output of the model directly, it also promotes the infor-
mation flow in the network and thus helps to improve the training efficiency. This is similar
to GSC and the constant scaling within a residual block [35]. Figure 7 shows the efficiency
of training the models with DM . It can be observed that the training process of GAS-CNN
is more stable and more efficient than that of REF-CNN. It is worth noting that the other
configurations of these two models are the same except for the ESC, which means learning
the residual y − x really helps to improve the efficiency of model training. Actually, Zhao

Fig. 6 The visual effect of GAS-CNN (DN ), GAS-CNN (DM ) and GAS-CNN (DN +DM ) on MR images.
The maximal PSNR and SSIM of each row are in bold, and the second ones are underlined
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Fig. 7 Comparison of training
efficiency between REF-CNN
and GAS-CNN. Both models are
evaluated on DM , and the
averages are shown in
parentheses. Note that the
oscillation amplitude of
GAS-CNN is smaller than that of
REF-CNN
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et al. [60] also validated the role of the ESC in stabilizing model training according to the
validation performance of model training.

4.3.3 Quantitative comparison

Another advantage of the ESC is that it can improve the performance of the model. Figure 8
shows the validation results of REF-CNN (DN ) and GAS-CNN (DN ). It can be observed
that GAS-CNN (DN ) performs better than REF-CNN (DN ) although both models have the
same model parameters and network depth. We also trained the models with MR training set
DM and the quantitative evaluation results are shown in Table 2, from which we can observe
that the performance of GAS-CNN is slightly better than that of REF-CNN on both TN and
TM . This further verifies the effectiveness of the ESC in improving model performance.

Note that we also tested the models with different testing images, i.e., trained with DM

but tested with TN , vice versa. The results show that the models trained on MR images
have certain effect on natural images and the models trained on natural images also have
some effect on MR images. This indicates that there may exist information sharing between
natural images and MR images, which may explain why knowledge transferred from natural
images to medical or MR images can be effective.

Fig. 8 The validation
performance of REF-CNN and
GAS-CNN on natural images.
The evaluation of the input
images is also plotted for
reference (Gibbs Input)
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Table 2 Quantitative comparison
between REF-CNN and GAS-
CNN on both TN and TM . The
maximum of each row is in bold,
and the second one is underlined

REF-CNN GAS-CNN

DN DM DN DM

TN PSNR 26.43 24.95 26.46 25.27

SSIM 0.7590 0.6970 0.7596 0.7108

TM PSNR 64.08 66.69 64.14 66.70

SSIM 0.9975 0.9978 0.9975 0.9983

4.4 Evaluation on knowledge transfer

The impact of knowledge transfer from natural images to MR images on the model per-
formance is investigated in this section. We train the GAS-CNN model with DN , DM and
DN +DM respectively. Here DN +DM represents the transfer learning version of the model,
i.e., DN is first employed to pre-train the model and the obtained parameters are used as the
initial values of retraining with DM (refer to Section 3.2.3). For convenience, both VN and
VM are evaluated during quick validation.

4.4.1 Performance on Natural Images

Figure 9a and b show the performance of the compared models on VN . It is obvious that the
model GAS-CNN (DN ) gives the best performance. This is unsurprising because the model
is trained and evaluated both with natural images. However, although GAS-CNN (DM ) and
GAS-CNN (DN + DM ) are mainly aimed at MR images, they do work for natural images
to a certain extent. This can be visually verified according to Fig. 10, of which the last two
columns display the results of GAS-CNN (DM ) and GAS-CNN (DN + DM ) to process
natural images. Compared with the original inputs, we can still observe artifact reduction in
the results of these two models. This also indicates that the models share some information
between natural images and MR images.

4.4.2 Performance on MR images

Figure 9c and d display the performance of the models on VM . Again, they illustrate the
information sharing mechanism between the models trained with natural images and MR
images since the information learned from natural images can be directly applied to suppress
the Gibbs-ringing artifacts in MR images.
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Fig. 9 The validation performance of the models. For all models, the validation results on both VN and VM

are shown for comparison purposes. a and b are the PSNR and SSIM values on VN , while c and d are that
on VM . Sinc indicates the artifact-degraded inputs
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Fig. 10 The visual effect of GAS-CNN (DN ), GAS-CNN (DM ) and GAS-CNN (DN + DM ) on natural
images. The maximal PSNR and SSIM of each row are in bold, and the second ones are underlined

This information sharing of the models trained with different datasets motivates us to use
transfer learning to solve the problem of Gibbs-ringing artifact suppression. More important
observation in Fig. 9c and d is that GAS-CNN (DN + DM ) significantly performs better
than GAS-CNN (DM ), which means that the knowledge transfer from natural images to the
MR images is indeed capable of further boosting the performance of the model. In Fig. 6,
we can also observe that knowledge transfer provides the best quantitative and qualitative
results over both PD (top) and T1 (bottom) images.

4.5 Comparison with other methods

Filtering techniques are routinely adopted to suppress ringing artifacts in various MRI appli-
cations and commercially available MRI systems. According to our observation, bilateral
filtering4 gives better performance than other filtering methods in case of zero-padding. In
addition, we also include NLM [37] and a recent method based on CNN [53]. Strictly speak-
ing, NLM [37] is not a method specifically for Gibbs-ringing artifact suppression, but a
typical MR image upsampling technique. However, it can improve the quality of upsampled
images to some extent, so we use it as a comparison method to illustrate the effectiveness
of the proposed method in improving image resolution. Note that the input images of NLM
[37] is not zero-padded in k-space. Wang et al. [53] proposed a CNN-based method sim-
ilar to SRCNN [12]. We reimplemented this model as a comparison method according to
the configuration described in the paper, and termed it as Gibbs-ringing Artifact Reduction
Convolutional Neural Network (GARCNN).

Table 3 collects the average PSNR and SSIM results of all the compared methods on both
TN and TM . GAS-CNN (DN ) achieves the best performance on natural images, and GAS-
CNN (DM ) and GAS-CNN (DN +DM ) surpass other methods significantly in terms of MR
images. This verifies the effectiveness of the proposed GAS-CNN model in dealing with
the task of Gibbs-ringing artifact suppression. More importantly, GAS-CNN (DN + DM )

4http://people.csail.mit.edu/jiawen/software/bilateralFilter.m

http://people.csail.mit.edu/jiawen/software/bilateralFilter.m
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Table 3 Quantitative evaluation of the compared methods on testing sets TN and TM . The maximal PSNR
and SSIM of each row are in bold, and the second ones are underlined (4-fold truncation on both directions)

Datasets \ Methods Sinc Bilateral NLM GARCNN GAS-CNN GAS-CNN GAS-CNN

Filtering Filtering [37] [53] (DN ) (DM ) (DN + DM )

TN PSNR (dB) 25.20 25.09 25.19 25.82 26.45 25.27 25.34

SSIM 0.7030 0.6877 0.7426 0.7501 0.7596 0.7108 0.7193

TM PSNR (dB) 64.25 64.21 64.14 64.73 64.14 66.70 66.94

SSIM 0.9971 0.9971 0.9972 0.9980 0.9974 0.9983 0.9985

presents better results than GAS-CNN (DM ), implying that the knowledge learned from
natural images is actually beneficial to improving the performance of deep models.

We also compared several methods on 3D MR volumes. Figure 11 exhibits the results of
these methods on T1 and T2 volumes, from which we can observe that GAS-CNN (DM )
and GAS-CNN (DN + DM ) surpass other methods over all slices. As shown in the plots,
the advantage of our models on the middle slices is more obvious than that on both ends.
This is because the image structure is more complex in the middle slices. Figures 12 and
13 show the visual comparison between the compared methods on PD, T1 and T2 images.
We can see that bilateral filtering and GARCNN [53] can eliminate Gibbs-ringing artifacts
in the input image to some extent, but the overall effect is unsatisfactory. On the contrary,
the proposed methods can effectively eliminate the artifacts and improve the image quality,
e.g., the positions pointed by the red arrows in Figs. 12 and 13.

4.6 Low frequency replacement

In our settings, the artifact-degraded image x is zero-padded in k-space to match the size
of the artifact-free image y. In this case, a reasonable assumption is to keep the low
frequency information of the input image unchanged (i.e., keep X in (2) fixed). This can
be achieved by simply replacing the low frequency part of the resulting image into the cor-
responding frequency components of the original input image. We term it as low frequency
replacement (LFR). Figure 14 shows that LFR can improve the performance of bilateral
filtering and the models trained and evaluated with different datasets. However, it is harm-
ful to the well-trained models (black rectangles in Fig. 14). This may be because that LFR
destroys the continuity of the learned k-space data and leads to the reappearance of these
artifacts. However, as a priori information, LFR is beneficial to the models with relatively
poor representational capacity, e.g., GARCNN [53].
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Fig. 11 The quantitative evaluation of the several methods on 3D volumes. As can be observed, the advantage
of our method is more obvious on slices in the middle. The results of sinc filtering (inputs to the models) are
also plotted for reference
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Fig. 12 The visual effects of the compared methods (top: T1 image, bottom: T2 image). Gibbs input cor-
responds to sinc filtering. Note that 4-fold truncation in k-space makes the image degradation very serious
(Gibbs input vs. Ground truth). It can be seen that our methods can eliminate Gibbs-ringing artifacts and
improve the spatial resolution of the image

Fig. 13 The visual effects of the compared methods (top: PD image, bottom: T1 image). The proposed
methods can eliminate Gibbs-ringing artifacts (bottom row) and improve the spatial resolution of the image
(top row)
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Fig. 14 The influence of low frequency replacement (LFR) on the compared methods. The red rectangle
shows the improvement of model performance, while the black rectangles indicate the degradation of model
performance

4.7 Implementation efficiency

The average execution time of bilateral filtering, GARCNN (DM ) [53], REF-CNN (DM )
and GAS-CNN (DM ) on TM is evaluated in this section. We do not include NLM [37]
here because it is an iterative optimization-based method that takes a lot of time (> 1000
ms) to process a 128 × 128 image. Since the image size in TM is 256 × 256 and we only
focus on running time here, we record the results of 128 × 128 and 512 × 512 by simply
resizing the images in TM before feeding them into the model. The results are calculated on
a Omnisky supercomputer workstation equipped with 2 Intel (R) Xeon (R) CPUs (E5-2630
v4, 2.2GHz) and 64GB memory. Table 4 presents the comparison between these methods
(ms / image). As can be seen, bilateral filtering runs faster than deep CNN-based methods.
This is because deep models have a large number of model parameters, requiring a lot of
computation resources. In addition, Table 4 also indicates that the efficiency of REF-CNN
(DM ) and GAS-CNN (DM ) is approximately equivalent.

5 Discussion and future work

5.1 Difference with other methods

The network used in this paper is a typical image generation model which is derived from
the EDSR model [35]. Therefore, some of the previous models for image generation are
similar to it, e.g., SRCNN [12], FSRCNN [13], DRCN [26], DRRN [49], VDSR [25],
ESPCNN [44], SRDenseNet [50], EDSR/MDSR [35] and RDN [59] etc. Nevertheless, we
also summarize the differences between the GAS-CNN and the EDSR model:
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Table 4 Execution time
comparison between bilateral
filtering and the proposed
method (ms / image)

Image Size 128 × 128 256 × 256 512 × 512

Bilateral 17.9 22.8 44.1

Filtering

GARCNN 49.2 78.5 97.8

(DM)

REF-CNN 71.8 110.8 272.9

(DM)

GAS-CNN 72.3 109.3 273.8

(DM)

� The input and output images of the models have different sizes. Image super-resolution
usually requires to change the size of the original image, but the GAS-CNN model aims
at recover a artifact-free image from an input image with the same size (zero-padding).

� The ESC between the outermost layers of the model enables it to learn the residual
between x and y, which does not exist in the original EDSR model.

� The GAS-CNN is mainly used to study the impact of knowledge transfer from natural
images to MR images on the problem of Gibbs-ringing artifact suppression. However,
the EDSR is especially designed to solve the task of single image super-resolution
(originally for natural images)

5.2 Calculation of evaluation indexes

We utilized the built-in functions of MATLAB (2016b) to calculate the values of PSNR
and SSIM. Due to different data types,5 the PSNR peaks and the SSIM dynamic ranges
are set to the maximum of the corresponding data type. In doing this, we expect that they
keep consistent across different examples. But this leads to the relatively high PSNR and
SSIM values for MR images. However, the relative relationship among the results and the
conclusion will not change with different dynamic ranges.

5.3 Image degradation

The present work only studies the case of 4-fold downsampling in both directions. However,
there may be cases where image degradation is less severe in practice. For example, 2-fold
downsampling in both directions or just in phase coding direction. In these cases, Gibbs-
ringing artifacts may not be as obvious as in this work. However, the main purpose of this
paper is to verify the effectiveness of knowledge transfer from natural images to MR images
in the regression problem of dense predication. Besides, the GAS-CNN is also believed to be
effective and capable of improving image quality in these cases. Investigating the different
downsampling scales, directions and degradations of Gibbs-ringing artifact suppression and
further improving the performance of the model will be a part of our future work.

5Usually, natural images are stored as uint8 (e.g., png, bmp, jpg etc.), while MR images are stored as int16
(e.g., dicom, nifti, etc.) with a much larger dynamic range.
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6 Conclusion

In this work, a novel method based on CNN and transfer learning is presented to suppress
Gibbs-ringing artifacts in MR images. The network used in this work is derived from the
EDSR model [35] with several adjustments. Several techniques have been applied to stabi-
lize model training, including constant scaling, L1 loss, and multilevel residual mechanism.
Knowledge transfer from natural images to MR image is adopted to further improve the
model performance. Experimental results show that the proposed method outperforms other
methods by a large margin both quantificationally and qualitatively. Moreover, we have
experimentally verified that transfer learning can indeed boost the performance of deep
regression models.

An important feature of the proposed method is that it formalizes Gibbs-ringing arti-
fact suppression as a problem of image generation akin to image super-resolution and/or
inpainting, thus it is capable of reducing the Gibbs-ringing artifacts and increasing the spa-
tial resolution of the images simultaneously, e.g., Figs. 12 and 13. This feature also helps to
improve image quality and visualization.
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