
LightweightLateral InhibitionNetwork
forSingleMRImageSuper-Resolution

Xiaole Zhao, Tao Zhang, Xueming Zou
zxlation@foxmail.com; taozhangjin@gmail.com; mark.zou@alltechmed.com

Contributions
1. A lateral inhibition network (LIN) is proposed
for single MR image SR. With a small amount
of parameters and computational overhead, LIN
can achieve accurate and fast SR reconstruction.
2. We conduct a inhibition unit (LIU) to impose
inhibitory regulation on features explicitly, which
is motivated by the lateral inhibition mechanism.
3. We propose to fuse the shallow features with
different receptive field sizes, which increases the
diversity of the extracted features and provide
more effective evidence for nonlinear inference
and image reconstruction.
4. We experimentally verify that combining the
lateral inhibition mechanism with the proposed
shallow feature extraction strategy contributes to
improving the performance of deep models.

Explicit Visual Inhibition
A famous computing model for simulating visual
inhibition is the Hartline-Ratliff Equation [1].

v̂i = φ

(
vi −

∑
j 6=i

wij ·max(0, vj − tij)

)
, (1)

where v̂i denotes the i-th element of the reversed
feature map v̂, and vi is the i-th element of input
feature v. wij indicates the inhibition coefficient
of the j-th neuron on the i-th neuron, while tij
denotes the threshold that the j-th neuron must
reach to inhibit the i-th neuron. φ(·) is a linear
correction function, which we add to the original
Hartline-Ratliff Equation. The symbols, i.e., ⊗
and 	, in the following figure are element-wise
operations.
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Inhibition tail (IT) of a lateral inhibition unit
(LIU): The upper branch imitates the weight tensor
w in the Hartline-Ratliff Equation, while the lower
branch simulates the threshold tensor t.
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Network Architecture
The network architecture is shown in the following figure. Feature extraction is composed of a set of
parallel dilated 3×3 conv layers followed by a 1×1 conv and a 3×3 conv layer. The outputs of these
dilation convolutions are concatenated together along the channel direction. The extracted shallow
feature is fed into the nonlinear mapping part of the network, which consists of a series of cascaded
lateral inhibition blocks (LIBs). Here, residual learning is adopted to stabilize model training. Image
reconstruction includes a upscale module, which is usually followed by a 3×3 conv layer.
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The overall network structure: The overall architecture of our LIN network. The dilated 3×3 convolutions
for feature extraction have different dilation rates to collect features in the receptive fields with different sizes.

Ablation Investigation and Model Analysis
We keep the backbone of the network unchanged and adjust FE and IT accordingly. For FE, the
comparative case is a single 3×3 conv layer that is denoted as “0”, and a group of dilated 3×3 conv
layers is denoted as “1”. As for IT, “0” stands for removing the IT from a LIU, the opposite is denoted
as “1”. The valid curves of these different configurations are shown in the left figure. We also analysis
the impact of the number of LIB and LIU on model performance. We fix n at 4 and set m = 2, 3, 4,
and fix m at 4 and set n = 1, 2, 3, 4. The right figure shows the testing results of these configurations.
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Alation study and model analysis: The valid curves of different configurations of the network for studying
the feature extraction and visual inhibition mechanism (left). The testing performance comparison between
the models with different numbers of LIB and LIU (right).

Quantitative and Qualitative Evaluation
Quantitative comparison between typical SR models. The maximum values in each comparative cell
are marked in red and the second ones are marked in blue (PSNR (dB) / SSIM).

method SR param bicubic downsampling k-space truncation
PD T1 T2 PD T1 T2

Bicubic ×2 / 35.04 / 0.9664 33.80 / 0.9525 33.44 / 0.9589 34.65 / 0.9625 33.38 / 0.9460 33.06 / 0.9541
NLM [2] ×2 / 37.26 / 0.9773 35.80 / 0.9685 35.58 / 0.9722 36.18 / 0.9707 34.71 / 0.9581 34.56 / 0.9641

SRCNN [3] ×2 24.5K 38.96 / 0.9836 37.12 / 0.9761 37.32 / 0.9796 38.23 / 0.9802 36.52 / 0.9705 37.04 / 0.9773
VDSR [4] ×2 0.67M 39.97 / 0.9861 37.67 / 0.9783 38.65 / 0.9836 39.89 / 0.9850 37.58 / 0.9760 38.74 / 0.9823

RecNet [5] ×2 1.33M 40.43 / 0.9873 37.86 / 0.9792 39.13 / 0.9848 40.10 / 0.9857 37.54 / 0.9764 39.03 / 0.9832
FSCWRN [6] ×2 3.50M 40.72 / 0.9880 37.98 / 0.9797 39.44 / 0.9855 40.91 / 0.9876 38.04 / 0.9786 39.82 / 0.9851

LIN [Ours] ×2 1.33M 40.84 / 0.9883 38.04 / 0.9798 39.50 / 0.9857 41.11 / 0.9880 38.21 / 0.9793 40.02 / 0.9855
LIN+ [Ours] ×2 1.33M 41.03 / 0.9886 38.19 / 0.9803 39.62 / 0.9860 41.31 / 0.9886 38.40 / 0.9801 40.18 / 0.9859

Bicubic ×3 / 31.20 / 0.9230 30.15 / 0.8900 29.80 / 0.9093 30.88 / 0.9167 29.79 / 0.8793 29.50 / 0.9016
NLM [2] ×3 / 32.81 / 0.9436 31.74 / 0.9216 31.28 / 0.9330 32.02 / 0.9324 30.83 / 0.9027 30.57 / 0.9197

SRCNN [3] ×3 24.5K 33.60 / 0.9516 32.17 / 0.9276 32.20 / 0.9440 32.90 / 0.9432 31.72 / 0.9187 31.80 / 0.9381
VDSR [4] ×3 0.67M 34.66 / 0.9599 32.91 / 0.9378 33.47 / 0.9559 34.27 / 0.9555 32.57 / 0.9304 33.23 / 0.9515

RecNet [5] ×3 1.33M 34.96 / 0.9623 33.05 / 0.9399 33.85 / 0.9588 34.67 / 0.9590 32.80 / 0.9347 33.69 / 0.9554
FSCWRN [6] ×3 3.50M 35.37 / 0.9653 33.24 / 0.9423 34.27 / 0.9618 35.30 / 0.9636 33.09 / 0.9390 34.34 / 0.9603

LIN [Ours] ×3 1.37M 35.39 / 0.9654 33.23 / 0.9421 34.26 / 0.9616 35.39 / 0.9642 33.25 / 0.9406 34.45 / 0.9609
LIN+ [Ours] ×3 1.37M 35.56 / 0.9661 33.44 / 0.9440 34.41 / 0.9627 35.59 / 0.9656 33.50 / 0.9429 34.63 / 0.9622

Bicubic ×4 / 29.13 / 0.8799 28.28 / 0.8312 27.86 / 0.8611 28.82 / 0.8713 27.96 / 0.8182 27.60 / 0.8511
NLM [2] ×4 / 30.27 / 0.9044 29.31 / 0.8655 28.85 / 0.8875 29.27 / 0.8906 28.68 / 0.8439 28.37 / 0.8718

SRCNN [3] ×4 24.5K 31.10 / 0.9181 29.90 / 0.8796 29.69 / 0.9052 30.52 / 0.9078 29.31 / 0.8616 29.32 / 0.8960
VDSR [4] ×4 0.67M 32.09 / 0.9311 30.57 / 0.8932 30.79 / 0.9240 31.69 / 0.9244 30.14 / 0.8818 30.51 / 0.9162

RecNet [5] ×4 1.33M 32.58 / 0.9378 30.86 / 0.9005 31.30 / 0.9310 32.16 / 0.9310 30.46 / 0.8900 31.03 / 0.9243
FSCWRN [6] ×4 3.50M 32.91 / 0.9415 30.96 / 0.9022 31.71 / 0.9359 32.78 / 0.9387 30.79 / 0.8973 31.71 / 0.9334

LIN [Ours] ×4 1.36M 32.94 / 0.9417 31.01 / 0.9033 31.72 / 0.9361 32.82 / 0.9391 30.88 / 0.8990 31.77 / 0.9339
LIN+ [Ours] ×4 1.36M 33.12 / 0.9432 31.28 / 0.9073 31.88 / 0.9376 33.03 / 0.9415 31.20 / 0.9041 31.96 / 0.9362

Bicubic NLM SRCNN VDSR RecNet FSCWRN LIN [Ours] Ground TruthIDN LIN+ [Ours]

PSNR / SSIM33.52 / 0.908433.40 / 0.905933.10 / 0.899132.80 / 0.891332.19 / 0.875831.73 / 0.861831.09 / 0.8386 33.13 / 0.8990 33.74 / 0.9125

As can be seen from both quantitative and visual
comparisons above, the proposed LIN model can

achieve better SR performance with fewer model
parameters and computational overhead.


