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A B S T R A C T

In recent years, convolutional neural networks (CNNs) have shown their advantages on MR image super-
resolution (SR) tasks. Many current SR models, however, have heavy demands on computation and memory,
which are not friendly to magnetic resonance imaging (MRI) where computing resource is usually constrained.
On the other hand, a basic consideration in most MRI experiments is how to reduce scanning time to improve
patient comfort and reduce motion artifacts. In this work, we ease the problem by presenting an effective and
lightweight model that supports fast training and accurate SR inference. The proposed network is inspired by
the lateral inhibition mechanism, which assumes that there exist inhibitory effects between adjacent neurons.
The backbone of our network consists of several lateral inhibition blocks, where the inhibitory effect is
explicitly implemented by a battery of cascaded local inhibition units. When model scale is small, explicitly
inhibiting feature activations is expected to further explore model representational capacity. For more effective
feature extraction, several parallel dilated convolutions are also used to extract shallow features directly from
the input image. Extensive experiments on typical MR images demonstrate that our lateral inhibition network
(LIN) achieves better SR performance than other lightweight models with similar model scale.
. Introduction

Magnetic resonance imaging (MRI) is a commonly-used and ver-
atile non-invasive imaging modality with the advantages of multi-
ontrast and no ionizing radiation etc. Spatial resolution is one of
he most important imaging parameters in most MRI experiments. In
eneral, high-resolution (HR) images usually provide rich structural
etails and benefit more accurate image postprocessing, hence promot-
ng effective subsequent analysis and early clinic diagnosis (Greenspan
t al., 2001, 2002; Reeth et al., 2012; Shi et al., 2019). However,
he spatial resolution of magnetic resonance (MR) images are typ-
cally constrained by various physical and physiological limitations,
.g., hardware device, imaging time, signal-to-noise ratio (SNR), and
otion artifacts etc. (Reeth et al., 2012; Plenge et al., 2012). Increasing

he spatial resolution of MR images typically reduces SNR, and increase
maging time and thus patient discomfort, indicating that these imaging
arameters are highly interdependent to each other (Plenge et al.,
012).

Image super-resolution (SR) provides an effective alternative to
nhance the resolution of MR images from the perspective of postpro-
essing (Zhao et al., 2018c), which aims at recovering a HR image
rom one or more low-resolution (LR) images. As a postprocessing
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method, image SR is an active research field that can substantially
break through the limitations of hardware device and improve image
resolution (Park et al., 2003; Plenge et al., 2012). In recent years,
deep learning techniques (LeCun et al., 2015), especially convolutional
neural networks (CNNs) (LeCun et al., 1989), have greatly promoted
the development of this field, resulting in the emergence of many
advanced SR methods, such as SRCNN (Dong et al., 2016a), DRCN (Kim
et al., 2016b), DRRN (Tai et al., 2017a), MemNet (Tai et al., 2017b),
VDSR (Kim et al., 2016a), EDSR/MDSR (Lim et al.), RDN (Zhang et al.,
2018b), RCAN (Zhang et al., 2018a) and CSN (Zhao et al., 2018c) etc.
Although these models have excellent performance, most of them are
mainly aimed at the SR tasks on natural images, instead of MR images.

In medical image processing community, there are also some deep
CNN-based medical image SR methods, e.g., Pham et al., Chen et al.
(2018b,a), Zhao et al. (2018a,c) etc. The primary intention of these
methods, to some extent, is to improve the performance of MR image
SR tasks. However, a fundamental consideration in many MRI experi-
ments is how to reduce imaging time to improve patient comfort and
avoid motion artifacts as much as possible. Therefore, high-efficiency
HR image reconstruction is also of significance in practical applica-
tions. On the other hand, an important problem in medical image
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Fig. 1. The overall structure of the proposed lateral inhibition network (LIN). The dilated 3 × 3 convolutions for feature extraction have different dilation rates to collect image
features in the receptive fields with different sizes. These features are then concatenated along the channel direction and integrated together with a 1 × 1 convolutional layer.
processing with deep learning techniques is the degradation of training
samples (Litjens et al., 2017; Zhao et al., 2018c). As the model scale
(e.g., model parameters, network depth/width etc.) increases, it will
be more difficult to train larger models with these degraded medical
training samples (Zhao et al., 2018c, 2019), and more tricks are needed
for successful model training (Li et al., 2018). In this regard, lightweight
models may be more appropriate for practical applications of medical
image SR tasks.

With these considerations, we aim at efficient MR image SR recon-
struction by introducing a lightweight CNN model in this paper. The
proposed model, which we term as lateral inhibition network (LIN), is
well-motivated and inspired by the biological lateral inhibition mecha-
nism that assumes there exists explicit inhibitory regulation between
adjacent neurons. The building module of our LIN network is local
inhibition unit (LIU) that takes residual block (Lim et al.; Zhang et al.,
2018b,a) as the backbone and a inhibition tail (IT) is attached to
integrate lateral inhibition mechanism into feature mapping. A series
of cascaded LIUs construct a local nonlinear mapping block, i.e., lateral
inhibition block (LIB), as shown in Fig. 2. Then multiple LIBs are
stacked together to build the nonlinear subnet of the proposed LIN
model. Besides, to extract shallow features with different receptive field
sizes, we use a group of 3 × 3 dilated conv layers with different dilation
rates in the feature extraction subnet, as shown in Fig. 1. Like Lim et al.,
Zhang et al. (2018b), Zhao et al. (2018c), we only apply one 3 × 3 conv
layer to reconstruct the final output.

Deep CNN models are generally built upon the convolution opera-
tion that extracts informative local features by integrating spatial and
channel information together within local receptive fields. In fact, a lot
of work demonstrates that careful structural design helps to improve
the representational capacity of deep models substantially (Simonyan
and Zisserman, 2014; He et al., 2016a,b; Kim et al., 2016a; Huang
et al., 2017; Hu et al., 2017; Zhao et al., 2018b). The proposed LIU
follows this point and serves as a feature regulator that simulates the
Hartline–Ratliff equation and explicitly adjusts the hierarchical features
of deep models. The explicit adjustment of the hierarchical features is
considered beneficial to alleviate the representational burden of deep
models and therefore improve SR performance (Hu et al., 2017; Zhao
et al., 2018c). The main contributions of this work are as following:

∙ A lightweight CNN model, LIN, is proposed for efficient and
accurate MR image SR tasks. With moderate model parameters
and computational overhead, our LIN achieves high-precision and
fast SR reconstruction.

∙ Motivated by the lateral inhibition mechanism, we design a local
inhibition unit (LIU) to explicitly impose inhibitory regulation
on feature maps, alleviating the representational burden of the
model.
2

∙ We propose to integrate the shallow features with different re-
ceptive field sizes to boost model performance. Through this
strategy, we can increase the diversity of the extracted features
and provide more effective evidence for nonlinear inference and
image reconstruction.

∙ We experimentally and analytically verify that combining the
lateral inhibition mechanism with our shallow feature extraction
strategy favors to improving the performance of deep models.

Extensive experiments on various MR images show that our model
achieves competitive SR performance with much less model parameters
and higher efficiency. The remainder of this paper is organized as
follows: in Section 2, we introduce some previous work related to
this work. The proposed LIN model is illustrated in Section 3. The
experimental results and analyses are given in Section 4, and the
conclusion is in Section 5.

2. Related work

2.1. MR image super-resolution

High-resolution medical images provide rich structural and textural
details that are critical for accurate postprocessing and early diagnoses.
However, HR acquisition based on hardware devices typically decreases
image SNR and increases scanning time (Greenspan et al., 2002; Plenge
et al., 2012; Shi et al., 2015; Chen et al., 2018b). As an alternative,
image SR methods are widely used to enhance the resolution of MR
images, and many SR techniques for MR images are studied and pro-
posed in the past decades, such as Greenspan et al. (2001), Shilling
et al. (2009) and Peled and Yeshurun (2015) that employ traditional
multi-image super-resolution (MISR) to deal with MR image SR tasks,
and Rousseau (2008), Manjón et al. (2010a), Rueda et al. (2013)
that focus on single image super-resolution (SISR) tasks, as well as
more advanced methods that are built upon deep CNNs, e.g., Pham
et al., Chen et al. (2018b), Zhao et al. (2018c, 2019) etc.

Due to unreasonable assumption or limited representational capac-
ity, early methods for medical image SR usually perform inferiorly and
unsatisfactorily. While some methods based on CNNs achieve excellent
performance, their models are large in scale and unfriendly to real
MRI scene where limited resource is available, e.g., Zhao et al. (2018c,
2019).

2.2. Lateral inhibition mechanism

Lateral inhibition is a neurobiological phenomenon in which a
neuron’s response to a stimulus is inhibited by the excitation of a neigh-
boring neuron (Rodieck and Stone, 1965; Bakshi and Ghosh, 2017). In
neurobiology, lateral inhibition is considered to make neurons more
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Fig. 2. The internal structure of the building modules of our LIN network. (a) The lateral inhibition block (LIB) consists of a series of local inhibition units (LIU) followed by a
3 × 3 conv layer. (b) A LIU contains two 3 × 3 conv layers with a ReLU layer (Nair and Hinton, 2010) in the middle, followed by a inhibition tail (IT) that performs inhibitory
regulation.
sensitive to spatially varying of stimulus than to spatially uniform stim-
ulus, thus leading visual neurons more sensitive to nonlinear features.
This explicit inhibition of visual features is widely-used in computer
vision community to boost the performance of various machine vision
tasks, such as image/video segmentation (Fernández-Caballero et al.,
2001, 2014), image classification (Fernandes et al., 2013), saliency
detection (Cao et al., 2018), face detection (Soares et al., 2014) and
image enhancement (Paradis and Jernigan, 1994; Sakamoto and Kato,
1998; Arkachar and Wagh, 2007; Dai et al., 2013; Li et al., 2016) etc.

Lateral inhibition has also been applied in modern artificial neural
network (ANN) models. For instance, based on the work developed
by Coultrip et al. (1992), Mao and Massaquoi (2007) showed that
the lateral inhibition effect from the neighboring neurons in the same
layer makes the network more stable and efficient (Fernandes et al.,
2013). Arkachar and Wagh (2007) presented a parameterized planer
neural network model to study the impact of lateral inhibition on edge
enhancement. Another well-known work that involves lateral inhibition
mechanism is AlexNet (Krizhevsky et al., 2012), in which a technique
called local response normalization (LRN) simulates lateral inhibition
and creates competition for big activities.

2.3. Lightweight SR models

After the pioneering work presented by Dong et al. (2016a), the
CNN-based SR models show the mainstream trend of building deeper
and larger networks for better model performance. Up to now, two rep-
resentative large-scale models are EDSR (Lim et al.) and RCAN (Zhang
et al., 2018a) with network depth of over 160 and 400 layers, and
parameters of about 43M and 16M respectively. Despite the excellent
SR performance of large-scale models, their practical application and
deployment are constrained by the large number of model parameters
and computing overhead. When resource-limited MRI is taken into
consideration, this is the case.

Subsequently, some lightweight CNN models have also been pro-
posed, such as VDSR (Kim et al., 2016a), AWSRN (Wang et al., 2019),
CARN (Ahn et al., 2018), DRRN (Tai et al., 2017a) and IDN (Hui
et al., 2018) etc. In addition, there are some lightweight SR models
specializing in MR image SR tasks, e.g., RecNet (Hyun et al., 2017) and
FSCWRN (Shi et al., 2019). All these methods suggest that lightweight
SR models can achieve better trade-off between model performance and
scale. In this work, we improve this trade-off for single MR image SR
tasks by introducing a lightweight CNN model that is motivated by the
lateral inhibition mechanism. We term the proposed model as lateral

inhibition network (LIN).

3

Fig. 3. Computing schema of a inhibition tail. The first bottom-up branch imitates
the weight tensor 𝐰 of Hartline–Ratliff Equation, and the second bottom-up branch
simulates the threshold 𝐭. This structure within a LIU acts as an inhibitory regulator
of intermediate features.

Fig. 4. The validation curves of different configurations of the network on 𝑉 (PD, BD)
with SR×2. The corresponding testing results on 𝑇 (PD, BD) are shown in Table 1.

3. Lateral inhibition network

3.1. Motivation: Visual inhibition

In neurobiology, lateral inhibition refers to the phenomenon where
the excitation of a neuron in a neural network inhibits the response of
its neighbors, thus creating a competition between neurons (Rodieck
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Table 1
Ablation study on the components of the network structure. The maximum values are
marked in red and the second ones are marked in blue (PSNR (dB)/SSIM).

FE 0 1 0 1
IT 0 0 1 1

×2 PSNR 40.75 40.81 40.78 40.86
SSIM 0.9880 0.9882 0.9881 0.9884

Table 2
The impact of 𝑛 and 𝑚 on model performance. The evaluation is performed on 𝑇 (T1,

D) with SR×2.
𝑛∖𝑚 2 3 4

1 37.30 / 0.9740 37.56 / 0.9752 37.73 / 0.9764
2 37.70 / 0.9759 37.91 / 0.9773 38.04 / 0.9787
3 37.93 / 0.9777 38.01 / 0.9783 38.15 / 0.9791
4 38.00 / 0.9780 38.13 / 0.9790 38.21 / 0.9793

and Stone, 1965; Arkachar and Wagh, 2007; Bakshi and Ghosh, 2017).
It mainly occurs in visual processes and makes visual neurons more
sensitive to nonlinear features in the scene (Bakshi and Ghosh, 2017).
A famous computing model for simulating this visual inhibition is the
Hartline–Ratliff Equation (Hartline and Ratliff, 1974):

�̂�𝑖 = 𝑣𝑖 −
∑

𝑗≠𝑖
𝑤𝑖,𝑗 ⋅max

(

0; 𝑣𝑗 − 𝑡𝑖,𝑗
)

(1)

where �̂�𝑖 is the 𝑖th element of the adjusted feature map �̂�, 𝑣𝑖 is the 𝑖th
element of the input feature map 𝐯. 𝑤𝑖,𝑗 is the inhibition coefficient of
the 𝑗th neuron on the 𝑖th neuron, and 𝑡𝑖,𝑗 denotes the threshold that the
𝑗th neuron must reach to inhibit the 𝑖th neuron. As previously stated,
this explicit regulation of features is considered to help alleviate the
representational burden of the model and improve the model perfor-
mance. The proposed LIN model is inspired by this visual inhibition
mechanism, and the computation of Eq. (1) is explicitly approximated
by the feature regulator IT.

It is worth noting that the Hartline–Ratliff Equation in Eq. (1) re-
quires a nonlocal weighting, resulting in a substantial increase in com-
puting effort. For simplicity, we use ordinary conv layers to substitute
the nonlocal weighting.

3.2. Overall network structure

The overall structure of the proposed LIN model is outlined in Figs. 1
and 2. The feature extraction is composed of a set of parallel dilated
3 × 3 conv layers followed by a 1 × 1 conv and a 3 × 3 conv layer. The
results of these dilation convolutions are concatenated together along
the channel direction. This process can be formally represented as:

𝐱0 = 𝐹ext(𝐱), (2)

where 𝐱0 represents the extracted shallow feature and 𝐱 denotes the
input image. 𝐹ext(⋅) implies the function corresponding to the entire
feature extraction process. Next, 𝐱0 is fed into a series of cascaded
lateral inhibition blocks (LIBs), which constitute the nonlinear mapping
process:

𝐱𝑛 = 𝐹 𝑛
𝑏 (𝐱𝑛−1) = 𝐹 𝑛

𝑏 (𝐹
𝑛−1
𝑏 (⋯𝐹 1

𝑏 (𝐱0)⋯)), (3)

where 𝐱𝑖 is the output of the 𝑖th LIB, and the input feature of the (𝑖+1)-
th LIB. Function 𝐹 𝑖

𝑏(⋅) corresponds to the mapping process of the 𝑖th
LIB. 𝑛 indicates the total number of LIBs in the network. At last, a
3 × 3 convolutional layer is employed to collect deep features and a
long-term skip connection is used to conduct residual learning:

𝐱𝑛+1 = 𝑇 (𝐱𝑛) + 𝐱0, (4)

where 𝐱𝑛+1 indicates the collected deep feature and 𝑇 (⋅) denotes the
3 × 3 conv layer after 𝐱 , as shown in Fig. 1.
𝑛

4

The image reconstruction subnet of the proposed LIN model consists
of a upscale module, and usually followed by a 3 × 3 conv layer. This
is the same as several typical SR models, such as EDSR (Lim et al.),
RDN (Zhang et al., 2018b) and CSN (Zhao et al., 2018c) etc.

3.3. Lateral inhibition block

The structure of LIB and LIU is shown in Fig. 2. Let 𝐱𝑖−1,0 = 𝐱𝑖−1
be the input of the 𝑖th LIB. The mapping process of a LIB can also be
iteratively represented as:

𝐱𝑖−1,𝑚 = 𝐹𝑚
𝑢 (𝐱𝑖−1,𝑚−1) = 𝐹𝑚

𝑢 (𝐹𝑚−1
𝑢 (⋯𝐹 1

𝑢 (𝐱𝑖−1,0)⋯)), (5)

where 𝑚 denotes the number of LIUs in each LIB, and function 𝐹 𝑗
𝑢 (⋅)

is the mapping of the 𝑗th LIU. Finally, a 3 × 3 conv layer is used to
produce the final output of the 𝑖th LIB, i.e., 𝐱𝑖, as shown in Fig. 2(a).
The process can be formalized as:

𝐱𝑖 = 𝑅(𝐱𝑖−1,𝑚) + 𝐱𝑖−1,0 = 𝑅(𝐱𝑖−1,𝑚) + 𝐱𝑖−1, (6)

where 𝑅(⋅) corresponds to the mapping of the conv layer at the end.
In each LIU, lateral inhibition is explicitly implemented by the fea-
ture regulator IT (see Figs. 2(b) and 3), which we will illustrate in
Section 3.4.

3.4. Inhibition tail

The detailed computing schema of the feature regulator IT is shown
in Fig. 3. The first bottom-up branch simulates the weight 𝐰 of Eq. (1),
and the second bottom-up branch calculates the threshold 𝐭. For the
branch of 𝐭,

𝐭′ = max
(

0; 𝐯 − 𝐭
)

= max
[

0; 𝐯 − 𝐹𝑡(𝐯)
]

, (7)

where 𝐭 = 𝐹𝑡(𝐯) is the threshold tensor, and 𝐹𝑡(⋅) denotes the 1 × 1
conv layer in the second bottom-up branch. For the branch of weighting
tensor 𝐰,

𝐰 = 𝜎
[

𝐹𝑤(𝐯)
]

, (8)

where 𝜎(⋅) denotes a softmax function that is used to normalize the
weight tensor, and 𝐹𝑤(⋅) corresponds to the 1 × 1 convolution in the
first bottom-up branch. Finally, the adjusted hierarchical feature can be
obtained by:

�̂� = 𝐹 (𝐯 − 𝐰⊗ 𝐭′), (9)

where 𝐹 (⋅) corresponds to the last 1 × 1 convolution in Fig. 3 and
⊗ denotes the element-wise multiplication. As can be seen, we use
ordinary 1 × 1 convolutional operations instead of nonlocal weighting
to avoid large computational overhead.

4. Experiments

4.1. Dataset

In this paper, the dataset used in the experiments is the same as
that used in CSN (Zhao et al., 2018c), which is derived from the
IXI dataset.1 It contains three typical MR image types: proton density
(PD) images, T1-weighted images and T2-weighted images. For each
image type, there are 500, 70 and 6 volumes of size 240 × 240 × 96
(height×width×depth) for training, testing and validation, respectively.
Besides, two image degradations are also included in this dataset,
namely, bicubic downsampling (BD) and 𝑘-space truncation (TD). For
convenience, we follow the convention descried in Zhao et al. (2018c)
to indicate each subdataset. For instance, 𝐷(PD, BD) implies the PD

1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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Fig. 5. The performance comparison between LIN models with different number of LIB and LIU. The evaluation is performed on T1 images with 𝑘-space truncation degradation
(TD) and SR×2. (a) Valid curves when 𝑛 = 4, 𝑚 = 2, 3, 4. (b) Valid curves when 𝑛 = 1, 2, 3, 4, 𝑚 = 4. (c) The corresponding testing results of (a) and (b). Model parameters are also
shown for clearer comparison.
Fig. 6. The visual comparison of several typical lightweight SR models on a PD image (top), T1 image (middle) and T2 image (bottom) with scaling factor = 3, 4, 4, respectively.
Image degradation is bicubic-downsampling (BD).
i

training set (𝐷) under bicubic downsampling, while 𝑉 (T1, TD) rep-
resents the T1 validation set (𝑉 ) under 𝑘-space truncation degrada-
tion and 𝑇 (T2, BD) denotes the testing set (𝑇 ) of T2 images with
bicubic-downsampling degradation.

Note that although the data is in 3D space, this work focuses on 2D
image SR. Therefore, in the experiments, we divide 3D volumes into a
bunch of slices along the imaging plane and all compared methods deal
with 3D volumes slice by slice.

4.2. Implementation details

We set 𝑛 = 𝑚 = 4 for our finalized LIN model. The number of
channels for the two conv layers in each LIU is 128 and 32 respectively.
Elsewhere, it is set to 32 except for the final output layer. Mini-batch
size is set to be 16. The models are trained with LR image patches of size

24 × 24 randomly extracted from 2D MR slices with the corresponding

5

HR patches. The training data is augmented by random horizontal and
vertical flips, and 90◦ rotations (transposition).

All models are implemented in TensorFlow 1.9.0 and trained on
a NVIDIA GeForce GTX 1080 Ti GPU for 106 iterations in total. We
use Xavier’s method (Glorot and Bengio, 2010) to initialize all model
parameters and Adam optimizer (Kingma and Ba, 2014) to minimize
the loss by setting 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−8. Learning rate is
nitialized as 2×10−4 for all layers and halved at every 2×105 iterations.

4.3. Model analysis

4.3.1. Ablation investigation
In this section, we investigate the influence of the structural com-

ponents of the network on the SR performance, including the feature
extraction (FE) part and the feature regulator IT. We keep the backbone

of the network unchanged and just adjust FE and IT accordingly. For
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Table 3
Quantitative comparison between several typical SR models. The maximum values in each comparative cell are marked in red and the second
ones are marked in blue. Both degradations (BD and TD) are included here (PSNR (dB) / SSIM).
Mode Methods Scale Params MultiAdds PD T1 T2

BD

Bicubic [2D] ×2 N/A N/A 35.04 / 0.9664 33.80 / 0.9525 33.44 / 0.9589
NLM [(Manjón et al., 2010b)] ×2 N/A N/A 37.26 / 0.9773 35.80 / 0.9685 35.58 / 0.9722
SRCNN [(Dong et al., 2016a)] ×2 24.5K 52.7G 38.96 / 0.9836 37.12 / 0.9761 37.32 / 0.9796
VDSR [(Kim et al., 2016a)] ×2 0.67M 612.6G 39.97 / 0.9861 37.67 / 0.9783 38.65 / 0.9836
IDN [(Hui et al., 2018)] ×2 0.73M 170.8G 40.27 / 0.9869 37.79 / 0.9787 39.09 / 0.9846
RecNet [(Hyun et al., 2017)] ×2 1.33M 275.0G 40.43 / 0.9873 37.86 / 0.9792 39.13 / 0.9848
FSCWRN [(Shi et al., 2019)] ×2 3.50M 1170.0G 40.72 / 0.9880 37.98 / 0.9797 39.44 / 0.9855
The proposed LIN [Ours] ×2 1.33M 306.2G 40.86 / 0.9884 38.04 / 0.9798 39.50 / 0.9856
The proposed LIN+ [Ours] ×2 1.33M 306.2G 41.03 / 0.9886 38.19 / 0.9803 39.62 / 0.9860

Bicubic [2D] ×3 N/A N/A 31.20 / 0.9230 30.15 / 0.8900 29.80 / 0.9093
NLM [(Manjón et al., 2010b)] ×3 N/A N/A 32.81 / 0.9436 31.74 / 0.9216 31.28 / 0.9330
SRCNN [(Dong et al., 2016a)] ×3 24.5K 52.7G 33.60 / 0.9516 32.17 / 0.9276 32.20 / 0.9440
VDSR [(Kim et al., 2016a)] ×3 0.67M 612.6G 34.66 / 0.9599 32.91 / 0.9378 33.47 / 0.9559
IDN [(Hui et al., 2018)] ×3 0.83M 76.8G 34.96 / 0.9619 33.06 / 0.9394 33.92 / 0.9591
RecNet [(Hyun et al., 2017)] ×3 1.33M 275.0G 34.96 / 0.9623 33.05 / 0.9399 33.85 / 0.9588
FSCWRN [(Shi et al., 2019)] ×3 3.50M 523.5G 35.37 / 0.9653 33.24 / 0.9423 34.27 / 0.9618
The proposed LIN [Ours] ×3 1.37M 141.2G 35.39 / 0.9654 33.23 / 0.9421 34.26 / 0.9616
The proposed LIN+ [Ours] ×3 1.37M 141.2G 35.56 / 0.9661 33.44 / 0.9440 34.41 / 0.9627

Bicubic [2D] ×4 N/A N/A 29.13 / 0.8799 28.28 / 0.8312 27.86 / 0.8611
NLM [(Manjón et al., 2010b)] ×4 N/A N/A 30.27 / 0.9044 29.31 / 0.8655 28.85 / 0.8875
SRCNN [(Dong et al., 2016a)] ×4 24.5K 52.7G 31.10 / 0.9181 29.90 / 0.8796 29.69 / 0.9052
VDSR [(Kim et al., 2016a)] ×4 0.67M 612.6G 32.09 / 0.9311 30.57 / 0.8932 30.79 / 0.9240
IDN [(Hui et al., 2018)] ×4 0.96M 43.9G 32.47 / 0.9354 30.74 / 0.8966 31.37 / 0.9312
RecNet [(Hyun et al., 2017)] ×4 1.33M 275.0G 32.58 / 0.9378 30.86 / 0.9005 31.30 / 0.9310
FSCWRN [(Shi et al., 2019)] ×4 3.50M 297.3G 32.91 / 0.9415 30.96 / 0.9022 31.71 / 0.9359
The proposed LIN [Ours] ×4 1.36M 85.6G 32.94 / 0.9417 31.01 / 0.9033 31.72 / 0.9361
The proposed LIN+ [Ours] ×4 1.36M 85.6G 33.12 / 0.9432 31.28 / 0.9073 31.88 / 0.9376

TD

Bicubic [2D] ×2 N/A N/A 34.65 / 0.9625 33.38 / 0.9460 33.06 / 0.9541
NLM [(Manjón et al., 2010b)] ×2 N/A N/A 36.18 / 0.9707 34.71 / 0.9581 34.56 / 0.9641
SRCNN [(Dong et al., 2016a)] ×2 24.5K 52.7G 38.23 / 0.9802 36.52 / 0.9705 37.04 / 0.9773
VDSR [(Kim et al., 2016a)] ×2 0.67M 612.6G 39.89 / 0.9850 37.58 / 0.9760 38.74 / 0.9823
IDN [(Hui et al., 2018)] ×2 0.73M 170.8G 40.43 / 0.9862 37.79 / 0.9765 39.48 / 0.9842
RecNet [(Hyun et al., 2017)] ×2 1.33M 275.0G 40.10 / 0.9857 37.54 / 0.9764 39.03 / 0.9832
FSCWRN [(Shi et al., 2019) ] ×2 3.50M 1170.0G 40.91 / 0.9876 38.04 / 0.9786 39.82 / 0.9851
The proposed LIN [Ours] ×2 1.33M 306.2G 41.11 / 0.9880 38.21 / 0.9793 40.02 / 0.9855
The proposed LIN+ [Ours] ×2 1.33M 306.2G 41.31 / 0.9886 38.40 / 0.9801 40.18 / 0.9859

Bicubic [2D] ×3 N/A N/A 30.88 / 0.9167 29.79 / 0.8793 29.50 / 0.9016
NLM [(Manjón et al., 2010b)] ×3 N/A N/A 32.02 / 0.9324 30.83 / 0.9027 30.57 / 0.9197
SRCNN [(Dong et al., 2016a)] ×3 24.5K 52.7G 32.90 / 0.9432 31.72 / 0.9187 31.80 / 0.9381
VDSR [(Kim et al., 2016a)] ×3 0.67M 612.6G 34.27 / 0.9555 32.57 / 0.9304 33.23 / 0.9515
IDN [(Hui et al., 2018)] ×3 0.83M 76.8G 34.88 / 0.9598 32.86 / 0.9348 33.95 / 0.9569
RecNet [(Hyun et al., 2017)] ×3 1.33M 275.0G 34.67 / 0.9590 32.80 / 0.9347 33.69 / 0.9554
FSCWRN [(Shi et al., 2019)] ×3 3.50M 523.5G 35.30 / 0.9636 33.09 / 0.9390 34.34 / 0.9603
The proposed LIN [Ours] ×3 1.37M 141.2G 35.39 / 0.9642 33.25 / 0.9406 34.45 / 0.9609
The proposed LIN+ [Ours] ×3 1.37M 141.2G 35.59 / 0.9656 33.50 / 0.9429 34.63 / 0.9622

Bicubic [2D] ×4 N/A N/A 28.82 / 0.8713 27.96 / 0.8182 27.60 / 0.8511
NLM [(Manjón et al., 2010b)] ×4 N/A N/A 29.27 / 0.8906 28.68 / 0.8439 28.37 / 0.8718
SRCNN [(Dong et al., 2016a)] ×4 24.5K 52.7G 30.52 / 0.9078 29.31 / 0.8616 29.32 / 0.8960
VDSR [(Kim et al., 2016a)] ×4 0.67M 612.6G 31.69 / 0.9244 30.14 / 0.8818 30.51 / 0.9162
IDN [(Hui et al., 2018)] ×4 0.96M 43.9G 32.33 / 0.9318 30.40 / 0.8889 31.31 / 0.9270
RecNet [(Hyun et al., 2017)] ×4 1.33M 275.0G 32.16 / 0.9310 30.46 / 0.8900 31.03 / 0.9243
FSCWRN [(Shi et al., 2019)] ×4 3.50M 297.3G 32.78 / 0.9387 30.79 / 0.8973 31.71 / 0.9334
The proposed LIN [Ours] ×4 1.36M 85.6G 32.82 / 0.9391 30.88 / 0.8990 31.77 / 0.9339
The proposed LIN+ [Ours] ×4 1.36M 85.6G 33.03 / 0.9415 31.20 / 0.9041 31.96 / 0.9362
FE, the comparative case is a single 3 × 3 conv layer that is denoted
s ‘‘0’’, and a group of dilated 3 × 3 conv layers used by the proposed
IN model is denoted as ‘‘1’’. For IT, the comparative case is removing
he IT from the LIU, also denoted as ‘‘0’’. And LIU attached by the
T is denoted as ‘‘1’’, as shown in Fig. 4 and Table 1. The evaluation
s performed on the testing dataset of PD images with SR×2 and

bicubic-downsampling, i.e., 𝑇 (PD, BD).
As can be seen from Table 1, the baseline network structure with-

ut FE and IT (LIN-00) gives PSNR = 40.75dB and SSIM = 0.9880.
owever, by adding either FE or IT into this baseline architecture, the
erformance is simply improved. Although FE seems to contribute more
o performance gain than IT, we can see that the co-occurrence of FE
nd IT within the network can further boost the performance (LIN-11).
e also visualize the convergence curves of these different network

onfigurations in Fig. 4, which are in line with the previous analyses
6

on the testing results. These comparisons and analyses imply that the
parallel feature extraction and the inhibitory regulation of intermediate
features help the model to improve the representational capacity and
obtain better SR performance.

4.3.2. Impact of 𝑛 and 𝑚
We also analysis the impact of the number of LIB and LIU on the

performance of the model. First, we fix 𝑛 at 4 and set 𝑚 = 2, 3, 4.
Fig. 5(a) shows the valid curves of these models on 𝑉 (T1, TD) with
SR×2. Also, we fix 𝑚 = 4 and set 𝑛 = 1, 2, 3, 4. The valid curves are
shown in Fig. 5(b) in this case. As we can see, the model performance
improves as 𝑛 or 𝑚 increases, which is unsurprising because the in-
crease in 𝑛 and 𝑚 typically enlarge model scale, e.g., network depth
and/or model parameters. The testing results corresponding to these
valid results are shown in Fig. 5(c) versus their model parameters.
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n obvious observation is that when 2 < 𝑛,𝑚 < 4, the configuration
ith 𝑛 = 2, 𝑚 = 4 performs better than that with 𝑛 = 4, 𝑚 = 2, and
= 3, 𝑚 = 4 performs better than 𝑛 = 4, 𝑚 = 3 (less model parameters

and higher PSNR). However, the advantage decreases gradually as 𝑛
and 𝑚 increase.

To further exhibit the impact of 𝑛 and 𝑚, several other models with
different 𝑛 and 𝑚 are evaluated, and the results are shown in Table 2,
where similar results can also be observed.

4.4. Comparison with other methods

We illustrate the effectiveness of the proposed LIN model by com-
paring it with several typical SR methods quantitatively and qualita-
tively: (1) NLM (Manjón et al., 2010b) specifically for MRI upsampling;
(2) SRCNN (Dong et al., 2016a), IDN (Hui et al., 2018) and VDSR (Kim
et al., 2016a) for natural images; (3) RecNet (Hyun et al., 2017)
and FSCWRN (Shi et al., 2019) specifically for MR image SR. The
quantitative results of these methods are directly cited from Zhao et al.
(2019), including the peak signal to noise ratio (PSNR) and structural
similarity index measurement (SSIM) (Wang et al., 2004). Note that
we only compare the models that have roughly similar number of
parameters as our LIN model. For fair comparison, we follow the setting
of hyper-parameters in Zhao et al. (2019), like batch size, patch size
and training steps etc. Besides, we also adopt the trick of geometric
self-ensemble (Lim et al.) to further improve the performance of the
model, and in this case it is denoted as LIN+ (as shown in Table 3).

For evaluating lightweight models, the computing overhead is also
an important factor to consider. To this end, we introduce Multi-
Adds (Ahn et al., 2018) as a performance index to evaluate the compu-
tational consumption of the model:

MultiAdds = 𝑘 × 𝑘 × 𝐶 × 𝐶 ×𝐻 ×𝑊 , (10)
𝑖𝑛 𝑜𝑢𝑡 3
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where 𝑘 is the size of conv kernels, and 𝐶𝑖𝑛 and 𝐶𝑜𝑢𝑡 denote the input
and output channels. 𝐻 and 𝑊 represent the spatial size of output
features. The size of HR images is assumed to be 720p i.e., 1280 × 720,
for the calculation of MultAdds, as in Ahn et al. (2018) and Wang et al.
(2019).

4.4.1. Quantitative evaluation
Table 3 shows the quantitative comparison of these methods as

well as their model scales. Overall, as can be observed, our LIN model
achieves the best SR performance although it has more moderate
model parameters, almost the same as RecNet (Hyun et al., 2017).
The network parameters of FSCWRN (Shi et al., 2019) are about 2.6
times that of ours, but our LIN model still performs better. In case
of TD, our LIN models move beyond other methods in terms of all
comparative cases. This may indicate that the proposed LIN models
are more suitable for lightweight MR image SR tasks in that 𝑘-space
runcation degradation aims to simulate the image acquisition process
n real-world MRI (Zhao et al., 2018c). Furthermore, we can see from
able 3 that the enhanced version LIN+ gives obviously better SR
erformance than the original LIN although they have the same model
cale, illustrating the effectiveness of geometric self-ensemble strategy
n single MR image SR tasks.

Different from other methods, the proposed models conduct the
onlinear inference in LR image space (Dong et al., 2016b; Lim et al.;
hang et al., 2018b; Zhao et al., 2018c) and upscale the input LR image
n image reconstruction phase, and the model scale of our LIN models
herefore varies slightly with the scaling factor, as shown in Table 3.
evertheless, both LIN and LIN+ still provide the best tradeoff between
etwork scale and SR performance. For example, the best model in
able 3 is FSCWRN (Shi et al., 2019) except the proposed models. While
ur LIN only takes up less than 40% of its parameters, and less than
0% of its computing overhead.
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Table 4
Running time of the compared models to process a single volume (seconds / volume).
scale Bicubic NLM SRCNN VDSR IDN RecNet FSCWRN LIN

𝑟 = 2 0.1543 90.4238 0.3021 1.7644 0.8123 0.8231 2.1906 0.8501
𝑟 = 3 0.1578 63.5357 0.3211 2.6488 0.4415 0.9652 1.1403 0.9689
𝑟 = 4 0.1610 46.0358 0.3284 2.4131 0.2773 1.0277 0.7477 1.0788
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4.4.2. Visual comparison
Fig. 6 displays the visual comparison between these methods under

bicubic-downsampling degradation. To demonstrate the effectiveness
of the proposed models on different types of MR images, we present
the visualizations of PD (top), T1 (middle) and T2 (bottom) images
respectively. The SR scaling factors for these comparative cases are
3, 4, and 4, respectively. As can be observed from Fig. 6, methods
based on CNNs, e.g., SRCNN (Dong et al., 2016a) and VDSR (Kim
et al., 2016a), perform significantly better than conventional methods,
i.e., Bicubic and NLM (Manjón et al., 2010b). However, the proposed
models present the best visual results with clearer details and texture
structures. The quantitative metrics below each clipped image also
illustrate the accuracy of the proposed models.

Fig. 7 shows the visual results of these methods under 𝑘-space
truncation degradation (TD). The scaling factor is 4 for all these com-
parative cases. Also, we can see that the proposed LIN and LIN+ models
present the best visualization on various types of MR images. For
instance, the middle row of Fig. 7 is the visual comparison on a T1
image. The skull and the dark groove on it present the sharpest edges
in the results of our models, and the sulcus gyrus in our results most
clearly implies its underlying structures. The bottom row in Fig. 7 is
the visual results of a T2 image. Most methods fail to recover the black
holes in the middle of clipped images. Although they can be recovered
by FSCWRN (Shi et al., 2019) and RecNet (Hyun et al., 2017), our
results are closer to the ground truth and present more faithful latent
structures than other methods.

4.4.3. Running time
Table 4 collects the running time required by the compared methods

to process a single volume. The sizes of 3D volumes for 𝑟 = 2, 𝑟 = 3 and
= 4 are 120 × 120×96, 80×80 × 96 and 60 × 60 × 96, respectively.
he evaluation is performed with a Omnisky supercomputing worksta-
ion equipped with 64GB memory and two Intel Xeon E5-2630 CPUs
2.20 GHz). The methods based on CNNs are evaluated with a single
VIDIA GTX 1080 Ti GPU. Note that the running time is averaged
n 3D volumes instead of 2D slices, as medical images are usually
rganized as 3D volumes.

According to Table 4, the slowest execution is NLM (Manjón et al.,
010b), which is not surprising because it is based on iterative op-
imization processing. Besides, the running time of deep CNN-based
ethods is similar, all less than 5 s per volume. The efficiency of our
odels is comparable to other fast models, e.g., IDN (Hui et al., 2018)

nd RecNet (Hyun et al., 2017), due to their similar model scales.
owever, the proposed LIN and LIN+ perform significantly better than

hese models, as shown in Table 3. This implies that our models are not
nly highly accurate in SR performance, but also practically useful in
eal-world applications.

. Conclusion

We demonstrate a novel CNN model for single MR image SR tasks
n this paper, which is motivated by the lateral inhibition mecha-
ism in neurobiology. An inhibition tail that explicitly adjusts the
ctivation of hidden neurons is designed to simulate the Hartline–
atliff Equation (Hartline and Ratliff, 1974) and used as a regulator of
ierarchical features. When the model is lightweight in scale, explicitly
mposing inhibitory adjustment on features is considered to help alle-
iate the representational burden of deep models and improve their
R performance. In addition, we also adopt geometric self-ensemble
8

strategy (Lim et al.) to further improve the performance of the proposed
models. Extensive experiments on different MR images exhibit the
superiority of the proposed models over other lightweight SR models.
Because of the better tradeoff between model scale and performance,
our LIN models should be more suitable for real-world applications and
deployment.
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