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Abstract. In recent years, convolutional neural networks (CNNs) have
shown their advantages on single MR image super-resolution tasks. Many
current SR models, however, have heavy demands on computation and
memory, which are not friendly to magnetic resonance imaging (MRI)
where computing resource is usually limited. On the other hand, a basic
consideration in most MRI experiments is how to reduce scanning time
to improve patient comfort and reduce motion artifacts. In this work, we
ease the problem by presenting an effective and lightweight model that
supports fast training and accurate SR inference. The proposed network
is inspired by the lateral inhibition mechanism, which assumes that there
exist inhibitory effects between adjacent neurons. The backbone of our
network consists of several lateral inhibition blocks, where the inhibitory
effect is explicitly implemented by a battery of cascaded local inhibition
units. When model scale is small, explicitly inhibiting feature activations
is expected to further explore model representational capacity. For more
effective feature extraction, several parallel dilated convolutions are also
used to extract shallow features directly from the input image. Extensive
experiments on various MR images (PD, T1 and T2 images) demonstrate
that our lateral inhibition network (LIN) achieves better SR performance
than other lightweight models with similar model scale.

Keywords: Convolutional neural network · lateral inhibition · magnetic
resonance imaging · super-resolution.

1 Introduction

Magnetic resonance imaging (MRI) is an important and widely-used non-invasive
medical imaging method with the advantage of multi-contrast and none ionizing
radiation. Spatial resolution is one of the most important imaging parameters
in most MRI scans. High-resolution (HR) images provide rich structural details
and benefit accurate image post-processing, thus facilitating more effective early
clinic diagnosis [28]. However, the resolution of magnetic resonance (MR) images
is usually affected by various physical and physiological factors, such as hardware
device, imaging time, signal-to-noise ratio (SNR), artifacts etc [28,27].

Image super-resolution (SR) provides an effective alternative to enhance the
resolution of MR images from the perspective of post-processing [43], which aims
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Fig. 1. The overall structure of our lateral inhibition network (LIN). The dilated 3×3
convolutions for feature extraction have different dilation rates to collect image features
in the receptive fields with different sizes.

at recovering a HR image from one or more low-resolution (LR) images. As a
post-processing method, image super-resolution is an active research field that
can substantially breaks through the limitations of hardware device and improve
image resolution [24,27]. In recent years, deep learning [16] technique, especially
convolutional neural network (CNN) [17], has greatly promoted the development
of this field, resulting in the emergence of many advanced SR models, such as
SRCNN [4], DRCN [14], DRRN [35], MemNet [36], VDSR [13], EDSR [19], RDN
[39], RCAN [38] etc. Although these models have excellent SR performance, they
are mainly aimed at SR tasks of natural images, instead of MR images.

In medical image processing community, there are also some deep CNN-based
medical image SR models, e.g., [26], [3], [2], [40], [43] etc. The primary intention
of these models, to some extent, is to improve the performance of MR image SR
tasks. However, a fundamental consideration in many MRI experiments is how
to reduce imaging time to improve patient comfort and avoid motion artifacts as
much as possible. Therefore, high-efficiency HR image reconstruction is also of
significance in practical applications. On the other hand, an important problem
in medical image processing with deep learning techniques is the degradation of
training samples [20,43]. As the model scale (e.g., model parameters, network
depth/width etc.) increases, it will be more difficult to train larger models with
these degraded medical training samples [43,42], and more tricks are needed for
successful model training [18]. In this regard, lightweight models may be more
appropriate for medical image SR tasks.

With these considerations, we introduce a lightweight SR model to deal with
single MR image SR tasks in this work. The proposed network is well-motivated
by the lateral inhibition mechanism, which assumes that there exists inhibitory
regulation between adjacent neurons. The building module of it is termed as local
inhibition unit (LIU), which takes the residual block [19,39,38] as the backbone
and a inhibition tail (IT) is attached to integrate the lateral inhibition mechanism
into feature mapping. Generally, CNNs are built upon the convolution operation
that extracts informative features by fusing spatial and channel-wise information
together within local receptive fields. A great deal of work has shown that careful
structural design favors to substantially improve the representational capacity of
deep models [34,7,8,10,9,41]. The proposed LIU follows this point and serves as
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Fig. 2. The internal structure of the building modules of our LIN network. (a) The
lateral inhibition block (LIB) consists of a series of local inhibition units (LIU) followed
by a 3×3 conv layer. (b) A LIU contains two 3×3 conv layers with a ReLU layer [23]
in the middle, followed by a inhibition tail (IT) that performs inhibitory regulation.

a feature regulator that simulates the Hartline-Rattliff equation and explicitly
adjusts hierarchical features. This explicit adjustment of intermediate features
is considered to help ease the representational burden of deep models and thus
improve SR performance [9,43]. To extract more effective features and promote
nonlinear mapping, we also adopt a set of parallel 3×3 dilated convolutions with
different dilation rates to collect shallow features within the receptive fields with
different sizes, as shown in Fig.1. Extensive experiments on various MR images
show that our model achieves competitive SR performance with much less model
parameters and higher efficiency.

2 Related Work

2.1 MR Image Super-Resolution

High-resolution medical images provide rich structural details that are critical
for accurate image post-processing and early diagnoses. However, HR acquisition
usually decreases SNR and increases scanning time [31,3]. As an alternate, image
SR technique is widely used to enhance the resolution of MR images, and many
SR methods for MR images are studied and proposed in the past decades, such as
[25], [6], [33] that apply traditional multi-image super-resolution (MISR) to deal
with MR image SR tasks, and [29], [21], [30] that focus on single medical image
SR tasks, and the more advanced methods [26], [3], [43] and [42] etc. that are
built upon deep CNNs. Due to unreasonable assumptions or models with limited
representational capacity, the performance of early methods for medical image
SR tasks is usually inferior and unsatisfactory. While some CNN-based methods
achieve excellent performance, their models are large in scale and unfriendly to
MRI with limited resources, e.g., [43] and [42].

2.2 Lightweight SR Models

After the pioneering work presented by Dong et al. [4], the CNN-based SR models
show the mainstream trend of building deeper and larger networks for better SR
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Fig. 3. The computing schema of a inhibition tail (IT). The upper branch imitates the
weight tensor w of the Hartline-Ratliff equation, and the lower branch simulates its
threshold tensor t. This part structure within a LIU acts as an inhibitory regulator of
intermediate features.

Table 1. Ablation study on the components of the network structure. The maximum
is marked in red and the second one is marked in blue (PSNR (dB) / SSIM).

FE #
√

#
√

IT # #
√ √

T (PD, BD) ×2 40.75 / 0.9880 40.81 / 0.9882 40.78 / 0.9881 40.84 / 0.9883

performance. Two representative large-scale models are MDSR [19] and RCAN
[38], with network depths of over 160 and 400 layers respectively. A large number
of model parameters and computing operations of large-scale SR models limit
their practical applications. Some lightweight models have thus emerged, such
as VDSR [13], IDN [11], CARN [1] and AWSRN [37] etc. Also, there are some
lightweight SR models specializing in MR image SR tasks, e.g., RecNet [12] and
FSCWRN [32]. All these methods suggest that lightweight models can achieve
better trade-off between model performance and scale. In this work, we further
improve this trade-off for single MR image SR tasks, by introducing a lightweight
model that is motivated by lateral inhibition mechanism. We term it as lateral
inhibition network (LIN).

3 Lateral Inhibition Network

3.1 Motivation: Visual Inhibition

In neurobiology, lateral inhibition is the capacity of an excited neuron to reduce
the activity of its neighbors, which creates a contrast in stimulation that allows
increased sensory perception. It occurs primarily in visual processes and is also
referred to as lateral antagonism. A well-known model for simulating this visual
inhibition is the Hartline-Ratliff equation:

v̂i = vi −
∑
j 6=i

wi,j ·max
(
0; vj − ti,j

)
(1)

where v̂i is the i-th element of the adjusted feature map v̂, vi is the i-th element of
the input feature map v. wi,j is the inhibition coefficient of the j-th neuron on the
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Table 2. Efficiency of the compared models. The sizes of 3D inputs for r = 2, r = 3
and r = 4 are 120×120×96, 80×80×96 and 60×60×96 (seconds/volume).

scale
Bicubic NLM SRCNN VDSR RecNet FSCWRN LIN

[2D] [22] [4] [13] [12] [32] [Ours]

r = 2 0.1543 90.4238 0.3021 1.7644 0.8231 2.1906 0.8501
r = 3 0.1578 63.5357 0.3211 2.6488 0.9652 1.1403 0.9689
r = 4 0.1610 46.0358 0.3284 2.4131 1.0277 0.7477 1.0788

i-th neuron, and ti,j represents the threshold that the j-th neuron must reach to
inhibit the i-th neuron. As mentioned earlier, this explicit regulation of features
is considered to help ease the representational burden of the model and thus
improve the model performance. It is worth noting that Eqn.1 requires a nonlocal
weighting, resulting in a substantial increase in computing effort. We simplified
it by simply replace the nonlocal computation with ordinary convolutions.

3.2 Overall Network Structure

The overall structure of the proposed model is outlined in Fig.1 and Fig.2. The
feature extraction is composed of a set of parallel dilated 3×3 convolutions, and
a 1×1 convolution followed by a 3×3 convolution. The results of these dilation
convolutions are concatenated together along the channel direction. This process
can be formally represented as:

x0 = Fext(x), (2)

where x0 is the extracted shallow feature and x is the input image. Fext(·) implies
the function corresponding to the entire feature extraction process. Next, x0 is
fed into a series of cascaded lateral inhibition blocks (LIBs), which constitute
the nonlinear mapping process:

xn = Fn
b (xn−1) = Fn

b (Fn−1
b (· · · F1

b (x0) · · · )), (3)

where xi is the output of the i-th LIB, and the input of the (i+ 1)-th LIB. The
function F i

b(·) corresponds to the mapping process of the i-th LIB. n is the total
number of LIBs in the network. Finally, a 3×3 convolution is used to collect deep
features and a long-term skip connection is used to conduct residual learning:

xn+1 = T (xn) + x0, (4)

where xn+1 indicates the collected deep feature and T (·) corresponds to the 3×3
convolution after xn, as shown in Fig.1. The image reconstruction part of our
LIN consists of a upscale module followed by a 3×3 convolution, which is the
same as EDSR [19].

3.3 Lateral Inhibition Block

The structure of LIB and LIU is shown in Fig.2. Let xi−1,0 = xi−1 be the input
of the i-th LIB and the first LIU in this LIB. The mapping process of a LIB can
also be iteratively represented as:

xi−1,m = Fm
u (xi−1,m−1) = Fm

u (Fm−1
u (· · · F1

u(xi−1,0) · · · )), (5)
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where m denotes the number of LIUs in each LIB, and the function F j
u(·) is the

mapping process of the j-th LIU. Finally, a 3×3 conv layer is used to produce
the final output of the i-th LIB, i.e., xi, as shown in Fig.2(a). The process can
be formalized as:

xi = R(xi−1,m) + xi−1,0 = R(xi−1,m) + xi−1, (6)

where R(·) is the mapping process of the conv layer at the end. The lateral
inhibition mechanism is explicitly implemented by the IT, which we will illustrate
in subsection 3.4.

3.4 Inhibition Tail

The computing schema of the IT is shown in Fig.3. The upper branch simulates
the weight w of Eqn.1, and the lower branch calculates the threshold t. For the
lower branch,

t = max
(

0; v −Ft(v)
)
, (7)

where t is the weight tensor, and Ft(·) denotes the 1×1 convolution in the lower
branch of the Fig.2. For the upper branch,

w = σ
(
Fw(v)

)
, (8)

where σ(·) is a softmax function, and Fw(·) corresponds to the 1×1 convolution
in the upper branch. Finally, the adjusted result can be obtained by:

v̂ = F(v −w ⊗ t), (9)

where ⊗ denotes element-wise multiplication and F(·) represents the last 1×1
convolution in Fig.3. As can be seen, we use ordinary convolution operations to
replace nonlocal weighting, to avoid heavy computation.

4 Experiments

4.1 Dataset

The dataset used in this study is the same as that used in [43]. It is derived from
the IXI dataset1 and contains 3 image types: PD, T1 and T2. For each MR image
type, there are 500, 70 and 6 volumes of size 240×240×96 (height×width×depth)
for training, testing and validation, respectively. Besides, two image degradations
are also included in the dataset, namely, bicubic downsampling (BD) and k-space
truncation (TD). For the sake of convenience, we follow the convention descried
in [43] to indicate each subset. For instance, D(PD, BD) implies the PD training
set under bicubic downsampling, while V(T1, TD) represents the T1 validation
set under k-space truncation degradation.
1 http://brain-development.org/ixi-dataset/.

http://brain-development.org/ixi-dataset/
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Table 3. Quantitative comparison between several typical SR models. The maximum
values in each comparative cell are marked in red and the second ones are marked in
blue. Both degradations (BD and TD) are included here. r is scaling factor and # P
denotes the number of model parameters (PSNR (dB) / SSIM).

Methods r # P PD T1 T2

BD

Bicubic [2D] ×2 / 35.04 / 0.9664 33.80 / 0.9525 33.44 / 0.9589
NLM [22] ×2 / 37.26 / 0.9773 35.80 / 0.9685 35.58 / 0.9722

SRCNN [4] ×2 24.5K 38.96 / 0.9836 37.12 / 0.9761 37.32 / 0.9796
VDSR [13] ×2 0.67M 39.97 / 0.9861 37.67 / 0.9783 38.65 / 0.9836

RecNet [12] ×2 1.33M 40.43 / 0.9873 37.86 / 0.9792 39.13 / 0.9848
FSCWRN [32] ×2 3.50M 40.72 / 0.9880 37.98 / 0.9797 39.44 / 0.9855

LIN [Ours] ×2 1.33M 40.84 / 0.9883 38.04 / 0.9798 39.50 / 0.9857
Bicubic [2D] ×3 / 31.20 / 0.9230 30.15 / 0.8900 29.80 / 0.9093

NLM [22] ×3 / 32.81 / 0.9436 31.74 / 0.9216 31.28 / 0.9330
SRCNN [4] ×3 24.5K 33.60 / 0.9516 32.17 / 0.9276 32.20 / 0.9440
VDSR [13] ×3 0.67M 34.66 / 0.9599 32.91 / 0.9378 33.47 / 0.9559

RecNet [12] ×3 1.33M 34.96 / 0.9623 33.05 / 0.9399 33.85 / 0.9588
FSCWRN [32] ×3 3.50M 35.37 / 0.9653 33.24 / 0.9423 34.27 / 0.9618

LIN [Ours] ×3 1.37M 35.39 / 0.9654 33.23 / 0.9421 34.26 / 0.9616
Bicubic [2D] ×4 / 29.13 / 0.8799 28.28 / 0.8312 27.86 / 0.8611

NLM [22] ×4 / 30.27 / 0.9044 29.31 / 0.8655 28.85 / 0.8875
SRCNN [4] ×4 24.5K 31.10 / 0.9181 29.90 / 0.8796 29.69 / 0.9052
VDSR [13] ×4 0.67M 32.09 / 0.9311 30.57 / 0.8932 30.79 / 0.9240

RecNet [12] ×4 1.33M 32.58 / 0.9378 30.86 / 0.9005 31.30 / 0.9310
FSCWRN [32] ×4 3.50M 32.91 / 0.9415 30.96 / 0.9022 31.71 / 0.9359

LIN [Ours] ×4 1.36M 32.94 / 0.9417 31.01 / 0.9033 31.72 / 0.9361

TD

Bicubic [2D] ×2 / 34.65 / 0.9625 33.38 / 0.9460 33.06 / 0.9541
NLM [22] ×2 / 36.18 / 0.9707 34.71 / 0.9581 34.56 / 0.9641

SRCNN [4] ×2 24.5K 38.23 / 0.9802 36.52 / 0.9705 37.04 / 0.9773
VDSR [13] ×2 0.67M 39.89 / 0.9850 37.58 / 0.9760 38.74 / 0.9823

RecNet [12] ×2 1.33M 40.10 / 0.9857 37.54 / 0.9764 39.03 / 0.9832
FSCWRN [32] ×2 3.50M 40.91 / 0.9876 38.04 / 0.9786 39.82 / 0.9851

LIN [Ours] ×2 1.33M 41.11 / 0.9880 38.21 / 0.9793 40.02 / 0.9855
Bicubic [2D] ×3 / 30.88 / 0.9167 29.79 / 0.8793 29.50 / 0.9016

NLM [22] ×3 / 32.02 / 0.9324 30.83 / 0.9027 30.57 / 0.9197
SRCNN [4] ×3 24.5K 32.90 / 0.9432 31.72 / 0.9187 31.80 / 0.9381
VDSR [13] ×3 0.67M 34.27 / 0.9555 32.57 / 0.9304 33.23 / 0.9515

RecNet [12] ×3 1.33M 34.67 / 0.9590 32.80 / 0.9347 33.69 / 0.9554
FSCWRN [32] ×3 3.50M 35.30 / 0.9636 33.09 / 0.9390 34.34 / 0.9603

LIN [Ours] ×3 1.37M 35.39 / 0.9642 33.25 / 0.9406 34.45 / 0.9609
Bicubic [2D] ×4 / 28.82 / 0.8713 27.96 / 0.8182 27.60 / 0.8511

NLM [22] ×4 / 29.27 / 0.8906 28.68 / 0.8439 28.37 / 0.8718
SRCNN [4] ×4 24.5K 30.52 / 0.9078 29.31 / 0.8616 29.32 / 0.8960
VDSR [13] ×4 0.67M 31.69 / 0.9244 30.14 / 0.8818 30.51 / 0.9162

RecNet [12] ×4 1.33M 32.16 / 0.9310 30.46 / 0.8900 31.03 / 0.9243
FSCWRN [32] ×4 3.50M 32.78 / 0.9387 30.79 / 0.8973 31.71 / 0.9334

LIN [Ours] ×4 1.36M 32.82 / 0.9391 30.88 / 0.8990 31.77 / 0.9339
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Bicubic NLM [22] SRCNN [4] VDSR [13] RecNet [12] FSCWRN [32] LIN [Ours] Ground Truth

PSNR / SSIM32.37 / 0.904232.33 / 0.903032.21 / 0.901031.95 / 0.894231.30 / 0.879330.64 / 0.862229.61 / 0.8254

PSNR / SSIM33.19 / 0.954533.15 / 0.954332.63 / 0.949731.91 / 0.942730.56 / 0.924229.48 / 0.906428.38 / 0.8811

Fig. 4. The visual comparison of several typical lightweight SR models on a T1 image
(top) and a T2 image (bottom) with r = 4 and BD degradation.

4.2 Implementation Details

We set n = m = 4 for our finalized model. The number of channels for the two
conv layers in each LIU is 128 and 32 respectively. Elsewhere, it is 32 except for
the final output layer. Batch size is set to be 16. The models are trained with
LR image patches of size 24×24 randomly extracted from 2D MR slices with the
corresponding HR patches. The training data is augmented by random horizontal
flips and 90◦ rotations. All models are implemented in TensorFlow 1.9.0 and
trained on a NVIDIA GeForce GTX 1080 Ti GPU for 106 iterations. We use
Xavier’s method [5] to initialize all model parameters and Adam optimizer [15]
to minimize the loss by setting β1 = 0.9, β2 = 0.999 and ε = 10−8. Learning rate
is initialized as 2× 10−4 for all layers and halved at every 2× 105 iterations.

4.3 Model Analysis

In this section, we study the impact of the structural components of the model
on the SR performance, including feature extraction (FE) and the inhibition tail
(IT). In Table 1, the comparative case for FE is to replace the parallel dilated
conv layers (

√
) with a single 3×3 conv layer (#). As for IT, “#” means simply

removing the component from the LIU. The evaluation is performed on the test
set of PD images with scaling factor r = 2. As can be seen, the baseline structure
without FE and IT gives the evaluation values of 40.75dB and 0.9880, and the
performance can be improved by adding FE or IT. Besides, the co-occurrence of
FE and IT within the network can further boost the performance.

These comparisons indicate that the proposed parallel feature extraction and
the active inhibitory regulation of intermediate features contribute to improve
the representational capacity and obtain better SR performance.
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Bicubic NLM [22] SRCNN [4] VDSR [13] RecNet [12] FSCWRN [32] LIN [Ours] Ground Truth

PSNR / SSIM32.32 / 0.958932.21 / 0.958331.62 / 0.953331.23 / 0.949030.00 / 0.936229.09 / 0.924227.85 / 0.9070

PSNR / SSIM28.47 / 0.884928.39 / 0.882928.05 / 0.874727.77 / 0.864426.84 / 0.838426.44 / 0.819325.80 / 0.7885

Fig. 5. The visual comparison on a PD image (top) and a T1 image (bottom) with
r = 3 and r = 4, respectively. The image degradation is k-space truncation (TD).

4.4 Comparison with Other Methods

We illustrate the effectiveness of the proposed LIN model by comparing it with
several typical SR methods, including: (1) the NLM [22] specifically for MRI
upsampling; (2) SRCNN [4] and VDSR [13] for natural images; (3) RecNet [12]
and FSCWRN [32] specifically for MR images. The quantitative results of these
methods are directly cited from [42]. Note that we only compare the models that
have roughly similar number of parameters as our LIN model.

Quantitative Evaluation Table 3 shows the quantitative comparison between
these methods. Overall, as can be observed, our LIN model achieves the best
SR performance although it has more moderate model parameters, almost the
same as RecNet [12]. The network parameters of FSCWRN [32] are about 2.6
times that of ours, but our LIN model still performs better. In case of TD, our
model moves beyond other methods in terms of all comparative cases. This may
indicate that our LIN method is more suitable for MR image SR tasks, as the
k-space truncation degradation aims to simulate the image acquisition process
in real-world MRI [43].

Visual Comparison Fig.4 and Fig.5 show the visual comparison between these
methods. Also, we can see that the proposed LIN model presents the best visual
effect on various MR images. For instance, the bottom row of Fig.5 is the visual
comparison on a T1 image with TD degradation and r = 4, the contour between
the gray ridge and the dark groove is clearer in results of our model, presenting
a clear indication of the ground truth.

Efficiency Table 2 shows the efficiency comparison between these methods. We
collected the results with a Omnisky supercomputing workstation equipped with
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64GB memory and two Intel Xeon E5-2630 CPUs (2.20 GHz). The CNN-based
methods are evaluated with a single NVIDIA GTX 1080 Ti GPU. The running
time is averaged on on a 3D volume instead of a 2D slices, as medical images are
usually organized as 3D volumes. We can see from Table. 2 that our LIN model
can reconstruct HR volumes in about 1s, for all scaling factors. This implies that
our model is not only highly accurate in SR performance, but also practically
useful in real-world applications.

5 Conclusion

We present a lightweight CNN model for MR image SR tasks in this work, which
is directly motivated by the visual inhibition mechanism. The inhibition tail in
our model acts as a feature regulator that explicitly adjusts the activation of
hidden neurons. When the model is small in scale, it is considered to help ease the
representational burden of models and improve the SR performance. Extensive
experiments on different MR images exhibit the superiority of our LIN model
over other lightweight SR models. Because of the better tradeoff between model
scale and performance, it is more suitable for real-world deployment.
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21. Manjón, J.V., Coupé, P., Buades, A., Collins, D.L., Robles, M.: MRI superreso-
lution using self-similarity and image priors. International Journal of Biomedical
Imaging 2010(Article ID 425891), 425891 (2010)
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